Register Dashboard
Search
397
views
0
recommends
+1 Recommend
4 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An engineering model of the COVID-19 trajectory to predict the success of isolation initiatives

      research-article

      1 , , 1 , *

      UCL Open Environment

      UCL Press

      virus propagation model, engineering approximations, length of intervention

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Much media and societal attention is today focused on how to best control the spread of coronavirus (COVID-19). Every day brings us new data, and policy makers are implementing different strategies in different countries to manage the impact of COVID-19. To respond to the first ‘wave’ of infection, several countries, including the UK, opted for isolation/lockdown initiatives, with different degrees of rigour. Data showed that these initiatives have yielded the expected results in terms of containing the rapid trajectory of the virus. When this article was first prepared (April 2020), the affected societies were wondering when the isolation/lockdown initiatives should be lifted. While detailed epidemiological, economic as well as social studies would be required to answer this question completely, here we employ a simple engineering model. Albeit simple, the model is capable of reproducing the main features of the data reported in the literature concerning the COVID-19 trajectory in different countries, including the increase in cases in countries following the initially successful isolation/lockdown initiatives. Keeping in mind the simplicity of the model, we attempt to draw some conclusions, which seem to suggest that a decrease in the number of infected individuals after the initiation of isolation/lockdown initiatives does not necessarily guarantee that the virus trajectory is under control. Within the limit of this model, it would seem that rigid isolation/lockdown initiatives for the medium term would lead to achieving the desired control over the spread of the virus. This observation seems consistent with the 2020 summer months, during which the COVID-19 trajectory seemed to be almost under control across most European countries. Consistent with the results from our simple model, winter 2020 data show that the virus trajectory was again on the rise. Because the optimal solution will achieve control over the spread of the virus while minimising negative societal impacts due to isolation/lockdown, which include but are not limited to economic and mental health aspects, the engineering model presented here is not sufficient to provide the desired answer. However, the model seems to suggest that to keep the COVID-19 trajectory under control, a series of short-to-medium term isolation measures should be put in place until one or more of the following scenarios is achieved: a cure has been developed and has become accessible to the population at large; a vaccine has been developed, tested and distributed to large portions of the population; a sufficiently large portion of the population has developed resistance to the COVID-19 virus; or the virus itself has become less aggressive. It is somewhat remarkable that an engineering model, despite all its approximations, provides suggestions consistent with advanced epidemiological models developed by several experts in the field. The model proposed here is however not expected to be able to capture the emergence of variants of the virus, which seem to be responsible for significant outbreaks, notably in India, in the spring of 2021, it cannot describe the effectiveness of vaccine strategies, as it does not differentiate among different age groups within the population, nor does it allow us to consider the duration of the immunity achieved after infection or vaccination.

          Related collections

          Most cited references 37

          • Record: found
          • Abstract: found
          • Article: not found

          The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study

          Summary Background In December, 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, emerged in Wuhan, China. Since then, the city of Wuhan has taken unprecedented measures in response to the outbreak, including extended school and workplace closures. We aimed to estimate the effects of physical distancing measures on the progression of the COVID-19 epidemic, hoping to provide some insights for the rest of the world. Methods To examine how changes in population mixing have affected outbreak progression in Wuhan, we used synthetic location-specific contact patterns in Wuhan and adapted these in the presence of school closures, extended workplace closures, and a reduction in mixing in the general community. Using these matrices and the latest estimates of the epidemiological parameters of the Wuhan outbreak, we simulated the ongoing trajectory of an outbreak in Wuhan using an age-structured susceptible-exposed-infected-removed (SEIR) model for several physical distancing measures. We fitted the latest estimates of epidemic parameters from a transmission model to data on local and internationally exported cases from Wuhan in an age-structured epidemic framework and investigated the age distribution of cases. We also simulated lifting of the control measures by allowing people to return to work in a phased-in way and looked at the effects of returning to work at different stages of the underlying outbreak (at the beginning of March or April). Findings Our projections show that physical distancing measures were most effective if the staggered return to work was at the beginning of April; this reduced the median number of infections by more than 92% (IQR 66–97) and 24% (13–90) in mid-2020 and end-2020, respectively. There are benefits to sustaining these measures until April in terms of delaying and reducing the height of the peak, median epidemic size at end-2020, and affording health-care systems more time to expand and respond. However, the modelled effects of physical distancing measures vary by the duration of infectiousness and the role school children have in the epidemic. Interpretation Restrictions on activities in Wuhan, if maintained until April, would probably help to delay the epidemic peak. Our projections suggest that premature and sudden lifting of interventions could lead to an earlier secondary peak, which could be flattened by relaxing the interventions gradually. However, there are limitations to our analysis, including large uncertainties around estimates of R 0 and the duration of infectiousness. Funding Bill & Melinda Gates Foundation, National Institute for Health Research, Wellcome Trust, and Health Data Research UK.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Contribution to the Mathematical Theory of Epidemics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications

              COVID-19 is currently a global pandemic, but human immune responses to the virus remain poorly understood. We analyzed 125 COVID-19 patients, and compared recovered to healthy individuals using high dimensional cytometry. Integrated analysis of ~200 immune and ~50 clinical features revealed activation of T cell and B cell subsets in a proportion of patients. A subgroup of patients had T cell activation characteristic of acute viral infection and plasmablast responses reaching >30% of circulating B cells. However, another subgroup had lymphocyte activation comparable to uninfected subjects. Stable versus dynamic immunological signatures were identified and linked to trajectories of disease severity change. These analyses identified three “immunotypes” associated with poor clinical trajectories versus improving health. These immunotypes may have implications for the design of therapeutics and vaccines for COVID-19.
                Bookmark

                Author and article information

                Journal
                UCL Open Environ
                UCLOE
                UCL Open Environment
                UCL Open Environ
                UCL Press (UK )
                2632-0886
                30 June 2021
                2021
                : 2
                Affiliations
                [1 ]Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
                Author notes
                *Corresponding author: E-mail: a.striolo@ 123456ucl.ac.uk
                Article
                10.14324/111.444/ucloe.000020
                © 2021 The Authors.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY) 4.0, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

                Page count
                Figures: 8, Tables: 2, References: 42, Pages: 16
                Categories
                Research Article

                Comments

                Comment on this article

                UCL Open Environment

                Volume 2, Issue null

                Similar content 179

                Most referenced authors 762