24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A visual review of the human pathogen Streptococcus pneumoniae

      , , , ,
      FEMS Microbiology Reviews
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references173

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular chaperones in protein folding and proteostasis.

          Most proteins must fold into defined three-dimensional structures to gain functional activity. But in the cellular environment, newly synthesized proteins are at great risk of aberrant folding and aggregation, potentially forming toxic species. To avoid these dangers, cells invest in a complex network of molecular chaperones, which use ingenious mechanisms to prevent aggregation and promote efficient folding. Because protein molecules are highly dynamic, constant chaperone surveillance is required to ensure protein homeostasis (proteostasis). Recent advances suggest that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimer's disease and Parkinson's disease. Interventions in these and numerous other pathological states may spring from a detailed understanding of the pathways underlying proteome maintenance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The global burden of group A streptococcal diseases.

            The global burden of disease caused by group A streptococcus (GAS) is not known. We review recent population-based data to estimate the burden of GAS diseases and highlight deficiencies in the available data. We estimate that there are at least 517,000 deaths each year due to severe GAS diseases (eg, acute rheumatic fever, rheumatic heart disease, post-streptococcal glomerulonephritis, and invasive infections). The prevalence of severe GAS disease is at least 18.1 million cases, with 1.78 million new cases each year. The greatest burden is due to rheumatic heart disease, with a prevalence of at least 15.6 million cases, with 282,000 new cases and 233,000 deaths each year. The burden of invasive GAS diseases is unexpectedly high, with at least 663,000 new cases and 163,000 deaths each year. In addition, there are more than 111 million prevalent cases of GAS pyoderma, and over 616 million incident cases per year of GAS pharyngitis. Epidemiological data from developing countries for most diseases is poor. On a global scale, GAS is an important cause of morbidity and mortality. These data emphasise the need to reinforce current control strategies, develop new primary prevention strategies, and collect better data from developing countries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wall teichoic acids of gram-positive bacteria.

              The peptidoglycan layers of many gram-positive bacteria are densely functionalized with anionic glycopolymers known as wall teichoic acids (WTAs). These polymers play crucial roles in cell shape determination, regulation of cell division, and other fundamental aspects of gram-positive bacterial physiology. Additionally, WTAs are important in pathogenesis and play key roles in antibiotic resistance. We provide an overview of WTA structure and biosynthesis, review recent studies on the biological roles of these polymers, and highlight remaining questions. We also discuss prospects for exploiting WTA biosynthesis as a target for new therapies to overcome resistant infections.
                Bookmark

                Author and article information

                Journal
                FEMS Microbiology Reviews
                Oxford University Press (OUP)
                1574-6976
                October 05 2017
                October 05 2017
                : 41
                : 6
                : 854-879
                Article
                10.1093/femsre/fux037
                29029129
                dd457919-7bb9-43e3-9e07-6dc0a2fcd14d
                © 2017
                History

                Comments

                Comment on this article