45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Wall Teichoic Acids of Gram-Positive Bacteria

      1 , 1 , 1
      Annual Review of Microbiology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The peptidoglycan layers of many gram-positive bacteria are densely functionalized with anionic glycopolymers known as wall teichoic acids (WTAs). These polymers play crucial roles in cell shape determination, regulation of cell division, and other fundamental aspects of gram-positive bacterial physiology. Additionally, WTAs are important in pathogenesis and play key roles in antibiotic resistance. We provide an overview of WTA structure and biosynthesis, review recent studies on the biological roles of these polymers, and highlight remaining questions. We also discuss prospects for exploiting WTA biosynthesis as a target for new therapies to overcome resistant infections.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: not found

          Peptidoglycan structure and architecture.

          The peptidoglycan (murein) sacculus is a unique and essential structural element in the cell wall of most bacteria. Made of glycan strands cross-linked by short peptides, the sacculus forms a closed, bag-shaped structure surrounding the cytoplasmic membrane. There is a high diversity in the composition and sequence of the peptides in the peptidoglycan from different species. Furthermore, in several species examined, the fine structure of the peptidoglycan significantly varies with the growth conditions. Limited number of biophysical data on the thickness, elasticity and porosity of peptidoglycan are available. The different models for the architecture of peptidoglycan are discussed with respect to structural and physical parameters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions.

            Most Gram-positive bacteria incorporate membrane- or peptidoglycan-attached carbohydrate-based polymers into their cell envelopes. Such cell-wall glycopolymers (CWGs) often have highly variable structures and have crucial roles in protecting, connecting and controlling the major envelope constituents. Further important roles of CWGs in host-cell adhesion, inflammation and immune activation have also been described in recent years. Identifying and harnessing highly conserved or species-specific structural features of CWGs offers excellent opportunities for developing new antibiotics, vaccines and diagnostics for use in the fight against severe infectious diseases, such as sepsis, pneumonia, anthrax and tuberculosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Penicillin-binding proteins and beta-lactam resistance.

              A number of ways and means have evolved to provide resistance to eubacteria challenged by beta-lactams. This review is focused on pathogens that resist by expressing low-affinity targets for these antibiotics, the penicillin-binding proteins (PBPs). Even within this narrow focus, a great variety of strategies have been uncovered such as the acquisition of an additional low-affinity PBP, the overexpression of an endogenous low-affinity PBP, the alteration of endogenous PBPs by point mutations or homologous recombination or a combination of the above.
                Bookmark

                Author and article information

                Journal
                Annual Review of Microbiology
                Annu. Rev. Microbiol.
                Annual Reviews
                0066-4227
                1545-3251
                September 08 2013
                September 08 2013
                : 67
                : 1
                : 313-336
                Affiliations
                [1 ]Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115; email:
                Article
                10.1146/annurev-micro-092412-155620
                3883102
                24024634
                1be24122-b961-4903-a9ae-a561a7d8f8c2
                © 2013
                History

                Comments

                Comment on this article