8
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-Sewered Sanitation Systems’ Global Greenhouse Gas Emissions: Balancing Sustainable Development Goal Tradeoffs to End Open Defecation

      , ,
      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Discharge of excreta into the environment and the use of decentralized sanitation technologies, such as septic tanks, pit latrines and ecological sanitation variants (i.e., container-based sanitation), contribute to greenhouse gas (GHG) emissions but have remained poorly quantified. The purpose of this analysis was to investigate the impacts that meeting Sustainable Development Goal (SDG) 6.2 (i.e., ending open defecation by 2030) would have on SDG 13 (i.e., combatting climate impacts). The current Intergovernmental Panel on Climate Change GHG estimation methodology was used as the basis for calculations in this analysis, augmented with improved emission factors from collected data sets for all types of on-site sanitation infrastructure. Specifically, this assessment focused on the three different service levels of sanitation (i.e., improved, unimproved and no service) as defined by UNICEF and WHO as they pertain to three Shared Socioeconomic Pathways. This analysis considered the 100-year global warming potential values in carbon dioxide equivalents of methane and nitrous oxide that can be emitted for each scenario and decentralized sanitation technology. Ultimately, six scenarios were developed for various combinations of pathways and sanitation technologies. There was significant variability between the scenarios, with results ranging from 68 Tg CO2eq/year to 7 TgCO2eq/year. The main contributors of GHG emissions in each scenario were demonstrated to be septic tank systems and pit latrines, although in scenarios that utilized improved emission factors (EFs) these emissions were significantly reduced compared with those using only standard IPCC EFs. This analysis demonstrated that using improved EFs reduced estimated GHG emissions within each SSP scenario by 53% on average. The results indicate that achieving SDG sanitation targets will ultimately increase GHG emissions from the current state but with a relatively small impact on total anthropogenic emissions. There is a need for the continued improvement and collection of field-based emission estimations to refine coarse scale emissions models as well as a better characterization of relevant biodegradation mechanisms in popular forms of on-site sanitation systems. An increase in the understanding of sanitation and climate change linkages among stakeholders will ultimately lead to a better inclusion of sanitation, and other basic human rights, in climate action goals.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          A new scenario framework for climate change research: the concept of shared socioeconomic pathways

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Planetary Boundaries: Exploring the Safe Operating Space for Humanity

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology

              The safe disposal of human excreta is of paramount importance for the health and welfare of populations living in low income countries as well as the prevention of pollution to the surrounding environment. On-site sanitation (OSS) systems are the most numerous means of treating excreta in low income countries, these facilities aim at treating human waste at source and can provide a hygienic and affordable method of waste disposal. However, current OSS systems need improvement and require further research and development. Development of OSS facilities that treat excreta at, or close to, its source require knowledge of the waste stream entering the system. Data regarding the generation rate and the chemical and physical composition of fresh feces and urine was collected from the medical literature as well as the treatability sector. The data were summarized and statistical analysis was used to quantify the major factors that were a significant cause of variability. The impact of this data on biological processes, thermal processes, physical separators, and chemical processes was then assessed. Results showed that the median fecal wet mass production was 128 g/cap/day, with a median dry mass of 29 g/cap/day. Fecal output in healthy individuals was 1.20 defecations per 24 hr period and the main factor affecting fecal mass was the fiber intake of the population. Fecal wet mass values were increased by a factor of 2 in low income countries (high fiber intakes) in comparison to values found in high income countries (low fiber intakes). Feces had a median pH of 6.64 and were composed of 74.6% water. Bacterial biomass is the major component (25–54% of dry solids) of the organic fraction of the feces. Undigested carbohydrate, fiber, protein, and fat comprise the remainder and the amounts depend on diet and diarrhea prevalence in the population. The inorganic component of the feces is primarily undigested dietary elements that also depend on dietary supply. Median urine generation rates were 1.42 L/cap/day with a dry solids content of 59 g/cap/day. Variation in the volume and composition of urine is caused by differences in physical exertion, environmental conditions, as well as water, salt, and high protein intakes. Urine has a pH 6.2 and contains the largest fractions of nitrogen, phosphorus, and potassium released from the body. The urinary excretion of nitrogen was significant (10.98 g/cap/day) with urea the most predominant constituent making up over 50% of total organic solids. The dietary intake of food and fluid is the major cause of variation in both the fecal and urine composition and these variables should always be considered if the generation rate, physical, and chemical composition of feces and urine is to be accurately predicted.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                November 2021
                October 27 2021
                : 13
                : 21
                : 11884
                Article
                10.3390/su132111884
                cac2c67d-4fe3-4d06-bab1-e0d102dbdb7b
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article