23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Sahara as a vicariant agent, and the role of Miocene climatic events, in the diversification of the mammalian order Macroscelidea (elephant shrews)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although the Sahara is a major geographical feature of the African continent, its role in the diversification of animal species is not well understood. We present here a molecular phylogeny for members of the endemic African mammalian order Macroscelidea (elephant shrews) with molecular-clock calculations; this molecular phylogeny provides convincing evidence that the genus Elephantulus is diphyletic. Elephantulus rozeti, the only elephant shrew species that resides north of the Sahara, is the sister group of a species from a different genus (Petrodromus tetradactylus), which resides just south of the Sahara. The split between these taxa coincided with major Miocene climatic events, which triggered the cooling and aridification of midlatitude continental regions, and a shift in the Sahara from a tropical to an arid environment. Thus, the North African distribution of E. rozeti is not the result of dispersion from an eastern species of the genus, but instead the result of a vicariant event involving the formation of the Sahara. The splitting events involved with most Elephantulus species in our analysis appear to coincide with these climatic events. This coincidence suggests that the environmental consequences associated with this period played an important role in the radiation of this order of mammals. The strongly supported phylogeny provides compelling evidence for a complex history of mosaic evolution, including pronounced bradytelic morphological evolution in some lineages, accelerated morphological evolution in others, and a remarkably slow rate of evolution of the male reproductive structure.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Trends, rhythms, and aberrations in global climate 65 Ma to present.

          Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea.

            A maximum likelihood method for inferring evolutionary trees from DNA sequence data was developed by Felsenstein (1981). In evaluating the extent to which the maximum likelihood tree is a significantly better representation of the true tree, it is important to estimate the variance of the difference between log likelihood of different tree topologies. Bootstrap resampling can be used for this purpose (Hasegawa et al. 1988; Hasegawa and Kishino 1989), but it imposes a great computation burden. To overcome this difficulty, we developed a new method for estimating the variance by expressing it explicitly. The method was applied to DNA sequence data from primates in order to evaluate the maximum likelihood branching order among Hominoidea. It was shown that, although the orangutan is convincingly placed as an outgroup of a human and African apes clade, the branching order among human, chimpanzee, and gorilla cannot be determined confidently from the DNA sequence data presently available when the evolutionary rate constancy is not assumed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimating the rate of evolution of the rate of molecular evolution.

              A simple model for the evolution of the rate of molecular evolution is presented. With a Bayesian approach, this model can serve as the basis for estimating dates of important evolutionary events even in the absence of the assumption of constant rates among evolutionary lineages. The method can be used in conjunction with any of the widely used models for nucleotide substitution or amino acid replacement. It is illustrated by analyzing a data set of rbcL protein sequences.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                PNAS
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                July 08 2003
                July 08 2003
                July 08 2003
                June 23 2003
                : 100
                : 14
                : 8325-8330
                Article
                10.1073/pnas.0832467100
                166228
                12821774
                59b4856c-1e68-4263-8956-84f5d9c04c29
                © 2003
                History

                Comments

                Comment on this article