3,018
views
0
recommends
+1 Recommend
2 collections
    1
    shares

      UCL Press journals including UCL Open Environment have now moved website.

      You will now find the journal, all publications, reviews and submission information at https://journals.uclpress.co.uk/ucloe

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Achieving a healthy indoor environment by using an emissions barrier to stop the spread of chemicals from a building into the indoor air

      research-article
      1 , 2 , * ,
      UCL Open Environment
      UCL Press
      emissions barrier, adsorbent, healthy buildings, restoration

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An emissions barrier was used in a premises due to complaints about the indoor air quality (IAQ) as a result of emissions from the building in question. The emissions comprised chlorophenols/chloroanisoles and polycyclic aromatic hydrocarbons (PAH) from treated wood and volatile organic compounds (VOCs), mainly 2-ethylhexanol, from polyvinyl chloride (PVC) flooring and the glue used to paste the flooring onto a concrete slab. Attaching the barrier at the surfaces from where the emissions were spread (floor, walls, ceilings) resulted in a fresh and odour-free indoor air. We conclude that using an emissions barrier in buildings made unhealthy by moisture is an efficient way of restoring pleasant and healthy indoor air.

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Respiratory and Allergic Health Effects of Dampness, Mold, and Dampness-Related Agents: A Review of the Epidemiologic Evidence

          Objectives Many studies have shown consistent associations between evident indoor dampness or mold and respiratory or allergic health effects, but causal links remain unclear. Findings on measured microbiologic factors have received little review. We conducted an updated, comprehensive review on these topics. Data sources We reviewed eligible peer-reviewed epidemiologic studies or quantitative meta-analyses, up to late 2009, on dampness, mold, or other microbiologic agents and respiratory or allergic effects. Data extraction We evaluated evidence for causation or association between qualitative/subjective assessments of dampness or mold (considered together) and specific health outcomes. We separately considered evidence for associations between specific quantitative measurements of microbiologic factors and each health outcome. Data synthesis Evidence from epidemiologic studies and meta-analyses showed indoor dampness or mold to be associated consistently with increased asthma development and exacerbation, current and ever diagnosis of asthma, dyspnea, wheeze, cough, respiratory infections, bronchitis, allergic rhinitis, eczema, and upper respiratory tract symptoms. Associations were found in allergic and nonallergic individuals. Evidence strongly suggested causation of asthma exacerbation in children. Suggestive evidence was available for only a few specific measured microbiologic factors and was in part equivocal, suggesting both adverse and protective associations with health. Conclusions Evident dampness or mold had consistent positive associations with multiple allergic and respiratory effects. Measured microbiologic agents in dust had limited suggestive associations, including both positive and negative associations for some agents. Thus, prevention and remediation of indoor dampness and mold are likely to reduce health risks, but current evidence does not support measuring specific indoor microbiologic factors to guide health-protective actions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ozone’s Impact on Public Health: Contributions from Indoor Exposures to Ozone and Products of Ozone-Initiated Chemistry

            Objective The associations between ozone concentrations measured outdoors and both morbidity and mortality may be partially due to indoor exposures to ozone and ozone-initiated oxidation products. In this article I examine the contributions of such indoor exposures to overall ozone-related health effects by extensive review of the literature as well as further analyses of published data. Findings Daily inhalation intakes of indoor ozone (micrograms per day) are estimated to be between 25 and 60% of total daily ozone intake. This is especially noteworthy in light of recent work indicating little, if any, threshold for ozone’s impact on mortality. Additionally, the present study estimates that average daily indoor intakes of ozone oxidation products are roughly one-third to twice the indoor inhalation intake of ozone alone. Some of these oxidation products are known or suspected to adversely affect human health (e.g., formaldehyde, acrolein, hydroperoxides, fine and ultrafine particles). Indirect evidence supports connections between morbidity/mortality and exposures to indoor ozone and its oxidation products. For example, cities with stronger associations between outdoor ozone and mortality tend to have residences that are older and less likely to have central air conditioning, which implies greater transport of ozone from outdoors to indoors. Conclusions Indoor exposures to ozone and its oxidation products can be reduced by filtering ozone from ventilation air and limiting the indoor use of products and materials whose emissions react with ozone. Such steps might be especially valuable in schools, hospitals, and childcare centers in regions that routinely experience elevated outdoor ozone concentrations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Formation of strong airway irritants in terpene/ozone mixtures.

              The American Society for Testing and Materials (ASTM) mouse bioassay, which quantifies airway irritation from reduction in the respiratory rate, was used to find evidence for the formation of highly irritating substances in reactions of ozone with terpenes (common indoor volatile organic compounds (VOCs)). No-observed-effect-levels (NOELs) and concentration-effect relationships were established for ozone, (+)-alpha-pinene and R-(+)-limonene, isoprene, and some of their major reaction products. Reaction mixtures of excess terpene and ozone considerably below their NOEL concentrations resulted in significant upper airway irritation. The reduction of the respiratory rate was from 30% to about 50%, lowest for the alpha-pinene and highest for the isoprene mixture. Chemical analysis of reaction mixtures by conventional methods showed that readily identified stable products and residual reactants at the concentrations found could not account for the observed reductions of the respiratory rate, assuming additivity of the reaction products. The results suggest that, in addition to known irritants (formaldehyde, acrolein, methacrolein, methyl vinylketone), one or more strong airway irritant(s) of unknown structure(s) were formed. Future indoor air quality (IAQ) guidelines for unsaturated VOCs (e.g., terpenes) and their emission from building products may require the consideration of reactions with oxidants, like ozone. Similarly, effects of ozone-emitting equipment should be re-evaluated.
                Bookmark

                Author and article information

                Journal
                UCL Open Environ
                UCLOE
                UCL Open Environment
                UCL Open Environ
                UCL Press (UK )
                2632-0886
                17 March 2022
                2022
                : 4
                : e033
                Affiliations
                [1 ]Lund University, Lund, Sweden
                [2 ]cTrap AB, Råbylunds Gård, Prästavägen 12, 224 80 Lund, Sweden
                Author notes
                *Corresponding author: E-mail: johan.mattsson@ 123456ctrap.se
                Author information
                https://orcid.org/0000-0002-5847-7528
                Article
                10.14324/111.444/ucloe.000033
                10171402
                47f1c486-34b9-40d2-a262-da756a4ba8a5
                © 2022 The Authors.

                This is an open access article distributed under the terms of the Creative Commons Attribution Licence (CC BY) 4.0, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 October 2021
                : 20 January 2022
                Page count
                Tables: 1, References: 11, Pages: 4
                Categories
                RESEARCH ARTICLE

                healthy buildings,restoration,emissions barrier,adsorbent

                Comments

                Comment on this article