10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Progress on Rapid Lateral Flow Assay-Based Early Diagnosis of COVID-19

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The outbreak of the coronavirus disease 2019 (COVID-19) has resulted in enormous losses worldwide. Through effective control measures and vaccination, prevention and curbing have proven significantly effective; however, the disease has still not been eliminated. Therefore, it is necessary to develop a simple, convenient, and rapid detection strategy for controlling disease recurrence and transmission. Taking advantage of their low-cost and simple operation, point-of-care test (POCT) kits for COVID-19 based on the lateral flow assay (LFA) chemistry have become one of the most convenient and widely used screening tools for pathogens in hospitals and at home. In this review, we introduce essential features of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, compare existing detection methods, and focus on the principles, merits and limitations of the LFAs based on viral nucleic acids, antigens, and corresponding antibodies. A systematic comparison was realized through summarization and analyses, providing a comprehensive demonstration of the LFA technology and insights into preventing and curbing the COVID-19 pandemic.

          Graphical Abstract

          Viral RNA‐, antibody‐, antigen-Based LFAs are used for large-scale screening of COVID‐19 at home, school, and under various non-laboratory scenarios.

          Related collections

          Most cited references169

          • Record: found
          • Abstract: found
          • Article: not found

          A Novel Coronavirus from Patients with Pneumonia in China, 2019

          Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A pneumonia outbreak associated with a new coronavirus of probable bat origin

            Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

              Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                03 May 2022
                2022
                03 May 2022
                : 10
                : 866368
                Affiliations
                [1] 1 Central Laboratory , Longgang District People’s Hospital of Shenzhen and The Second Affiliated Hospital of the Chinese University of Hong Kong , Shenzhen, China
                [2] 2 Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging , School of Biomedical Engineering , Health Science Center , Shenzhen University , Shenzhen, China
                Author notes

                Edited by: Segaran P Pillai, United States Department of Health and Human Services, United States

                Reviewed by: Parikshit Moitra, University of Maryland, Baltimore, United States

                Maria Lurdes Pinto, University of Trás-os-Montes and Alto Douro, Portugal

                *Correspondence: Chengbin Yang, cbyang@ 123456szu.edu.cn ; Jia Liu, liujia870702@ 123456126.com

                This article was submitted to Biosafety and Biosecurity, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                866368
                10.3389/fbioe.2022.866368
                9111179
                35592553
                3d3e5d52-5a57-401e-81c5-3461879ac224
                Copyright © 2022 Zhang, Chai, Hu, Xu, Li, Chen, Yang and Liu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 January 2022
                : 04 April 2022
                Funding
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Funded by: Natural Science Foundation of Guangdong Province , doi 10.13039/501100003453;
                Categories
                Bioengineering and Biotechnology
                Review

                lateral flow assay,nucleic acid,antigen,antibody,the point of care,covid-19,sars-cov-2

                Comments

                Comment on this article