36
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      <xml><?covid-19-pmc?></xml>Recovery and symptom trajectories up to two years after SARS-CoV-2 infection: population based, longitudinal cohort study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To evaluate longer term symptoms and health outcomes associated with post-covid-19 condition within a cohort of individuals with a SARS-CoV-2 infection.

          Design

          Population based, longitudinal cohort.

          Setting

          General population of canton of Zurich, Switzerland.

          Participants

          1106 adults with a confirmed SARS-CoV-2 infection who were not vaccinated before infection and 628 adults who did not have an infection.

          Main outcome measures

          Trajectories of self-reported health status and covid-19 related symptoms between months six, 12, 18, and 24 after infection and excess risk of symptoms at six months after infection compared with individuals who had no infection.

          Results

          22.9% (95% confidence interval 20.4% to 25.6%) of individuals infected with SARS-CoV-2 did not fully recover by six months. The proportion of individuals who had an infection who reported not having recovered decreased to 18.5% (16.2% to 21.1%) at 12 months and 17.2% (14.0% to 20.8%) at 24 months after infection. When assessing changes in self-reported health status, most participants had continued recovery (68.4% (63.8% to 72.6%)) or had an overall improvement (13.5% (10.6% to 17.2%)) over time. Yet, 5.2% (3.5% to 7.7%) had a worsening in health status and 4.4% (2.9% to 6.7%) had alternating periods of recovery and health impairment. The point prevalence and severity of covid-19 related symptoms also decreased over time, with 18.1% (14.8% to 21.9%) reporting symptoms at 24 months. 8.9% (6.5% to 11.2%) of participants reported symptoms at all four follow-up time points, while in 12.5% (9.8% to 15.9%) symptoms were alternatingly absent and present. Symptom prevalence was higher among individuals who were infected compared with those who were not at six months (adjusted risk difference 17.0% (11.5% to 22.4%)). Excess risk (adjusted risk difference) for individual symptoms among those infected ranged from 2% to 10%, with the highest excess risks observed for altered taste or smell (9.8% (7.7% to 11.8%)), post-exertional malaise (9.4% (6.1% to 12.7%)), fatigue (5.4% (1.2% to 9.5%)), dyspnoea (7.8% (5.2% to 10.4%)), and reduced concentration (8.3% (6.0% to 10.7%)) and memory (5.7% (3.5% to 7.9%)).

          Conclusions

          Up to 18% of individuals who were not vaccinated before infection had post-covid-19 condition up to two years after infection, with evidence of excess symptom risk compared with controls. Effective interventions are needed to reduce the burden of post-covid-19 condition. Use of multiple outcome measures and consideration of the expected rates of recovery and heterogeneity in symptom trajectories are important in the design and interpretation of clinical trials.

          Study registration

          Current Controlled Trials ISRCTN14990068

          Current Controlled Trials ISRCTN18181860

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.

          Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover 3 main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors, to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. Eighteen items are common to all 3 study designs and 4 are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available at http://www.annals.org and on the Web sites of PLoS Medicine and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterizing long COVID in an international cohort: 7 months of symptoms and their impact

            Background A significant number of patients with COVID-19 experience prolonged symptoms, known as Long COVID. Few systematic studies have investigated this population, particularly in outpatient settings. Hence, relatively little is known about symptom makeup and severity, expected clinical course, impact on daily functioning, and return to baseline health. Methods We conducted an online survey of people with suspected and confirmed COVID-19, distributed via COVID-19 support groups (e.g. Body Politic, Long COVID Support Group, Long Haul COVID Fighters) and social media (e.g. Twitter, Facebook). Data were collected from September 6, 2020 to November 25, 2020. We analyzed responses from 3762 participants with confirmed (diagnostic/antibody positive; 1020) or suspected (diagnostic/antibody negative or untested; 2742) COVID-19, from 56 countries, with illness lasting over 28 days and onset prior to June 2020. We estimated the prevalence of 203 symptoms in 10 organ systems and traced 66 symptoms over seven months. We measured the impact on life, work, and return to baseline health. Findings For the majority of respondents (>91%), the time to recovery exceeded 35 weeks. During their illness, participants experienced an average of 55.9+/- 25.5 (mean+/-STD) symptoms, across an average of 9.1 organ systems. The most frequent symptoms after month 6 were fatigue, post-exertional malaise, and cognitive dysfunction. Symptoms varied in their prevalence over time, and we identified three symptom clusters, each with a characteristic temporal profile. 85.9% of participants (95% CI, 84.8% to 87.0%) experienced relapses, primarily triggered by exercise, physical or mental activity, and stress. 86.7% (85.6% to 92.5%) of unrecovered respondents were experiencing fatigue at the time of survey, compared to 44.7% (38.5% to 50.5%) of recovered respondents. 1700 respondents (45.2%) required a reduced work schedule compared to pre-illness, and an additional 839 (22.3%) were not working at the time of survey due to illness. Cognitive dysfunction or memory issues were common across all age groups (~88%). Except for loss of smell and taste, the prevalence and trajectory of all symptoms were similar between groups with confirmed and suspected COVID-19. Interpretation Patients with Long COVID report prolonged, multisystem involvement and significant disability. By seven months, many patients have not yet recovered (mainly from systemic and neurological/cognitive symptoms), have not returned to previous levels of work, and continue to experience significant symptom burden. Funding All authors contributed to this work in a voluntary capacity. The cost of survey hosting (on Qualtrics) and publication fee was covered by AA's research grant (Wellcome Trust/Gatsby Charity via Sainsbury Wellcome center, UCL).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records

              Background Neurological and psychiatric sequelae of COVID-19 have been reported, but more data are needed to adequately assess the effects of COVID-19 on brain health. We aimed to provide robust estimates of incidence rates and relative risks of neurological and psychiatric diagnoses in patients in the 6 months following a COVID-19 diagnosis. Methods For this retrospective cohort study and time-to-event analysis, we used data obtained from the TriNetX electronic health records network (with over 81 million patients). Our primary cohort comprised patients who had a COVID-19 diagnosis; one matched control cohort included patients diagnosed with influenza, and the other matched control cohort included patients diagnosed with any respiratory tract infection including influenza in the same period. Patients with a diagnosis of COVID-19 or a positive test for SARS-CoV-2 were excluded from the control cohorts. All cohorts included patients older than 10 years who had an index event on or after Jan 20, 2020, and who were still alive on Dec 13, 2020. We estimated the incidence of 14 neurological and psychiatric outcomes in the 6 months after a confirmed diagnosis of COVID-19: intracranial haemorrhage; ischaemic stroke; parkinsonism; Guillain-Barré syndrome; nerve, nerve root, and plexus disorders; myoneural junction and muscle disease; encephalitis; dementia; psychotic, mood, and anxiety disorders (grouped and separately); substance use disorder; and insomnia. Using a Cox model, we compared incidences with those in propensity score-matched cohorts of patients with influenza or other respiratory tract infections. We investigated how these estimates were affected by COVID-19 severity, as proxied by hospitalisation, intensive therapy unit (ITU) admission, and encephalopathy (delirium and related disorders). We assessed the robustness of the differences in outcomes between cohorts by repeating the analysis in different scenarios. To provide benchmarking for the incidence and risk of neurological and psychiatric sequelae, we compared our primary cohort with four cohorts of patients diagnosed in the same period with additional index events: skin infection, urolithiasis, fracture of a large bone, and pulmonary embolism. Findings Among 236 379 patients diagnosed with COVID-19, the estimated incidence of a neurological or psychiatric diagnosis in the following 6 months was 33·62% (95% CI 33·17–34·07), with 12·84% (12·36–13·33) receiving their first such diagnosis. For patients who had been admitted to an ITU, the estimated incidence of a diagnosis was 46·42% (44·78–48·09) and for a first diagnosis was 25·79% (23·50–28·25). Regarding individual diagnoses of the study outcomes, the whole COVID-19 cohort had estimated incidences of 0·56% (0·50–0·63) for intracranial haemorrhage, 2·10% (1·97–2·23) for ischaemic stroke, 0·11% (0·08–0·14) for parkinsonism, 0·67% (0·59–0·75) for dementia, 17·39% (17·04–17·74) for anxiety disorder, and 1·40% (1·30–1·51) for psychotic disorder, among others. In the group with ITU admission, estimated incidences were 2·66% (2·24–3·16) for intracranial haemorrhage, 6·92% (6·17–7·76) for ischaemic stroke, 0·26% (0·15–0·45) for parkinsonism, 1·74% (1·31–2·30) for dementia, 19·15% (17·90–20·48) for anxiety disorder, and 2·77% (2·31–3·33) for psychotic disorder. Most diagnostic categories were more common in patients who had COVID-19 than in those who had influenza (hazard ratio [HR] 1·44, 95% CI 1·40–1·47, for any diagnosis; 1·78, 1·68–1·89, for any first diagnosis) and those who had other respiratory tract infections (1·16, 1·14–1·17, for any diagnosis; 1·32, 1·27–1·36, for any first diagnosis). As with incidences, HRs were higher in patients who had more severe COVID-19 (eg, those admitted to ITU compared with those who were not: 1·58, 1·50–1·67, for any diagnosis; 2·87, 2·45–3·35, for any first diagnosis). Results were robust to various sensitivity analyses and benchmarking against the four additional index health events. Interpretation Our study provides evidence for substantial neurological and psychiatric morbidity in the 6 months after COVID-19 infection. Risks were greatest in, but not limited to, patients who had severe COVID-19. This information could help in service planning and identification of research priorities. Complementary study designs, including prospective cohorts, are needed to corroborate and explain these findings. Funding National Institute for Health Research (NIHR) Oxford Health Biomedical Research Centre.
                Bookmark

                Author and article information

                Contributors
                Role: postdoctoral researcher
                Role: postdoctoral researcher
                Role: senior researcher
                Role: doctoral student
                Role: postdoctoral researcher
                Role: senior researcher
                Role: professor
                Role: professor
                Journal
                BMJ
                BMJ
                BMJ-UK
                bmj
                The BMJ
                BMJ Publishing Group Ltd.
                0959-8138
                1756-1833
                2023
                31 May 2023
                : 381
                : e074425
                Affiliations
                [1 ]Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
                [2 ]Department of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
                [3 ]Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
                Author notes
                Correspondence to: M A Puhan miloalan.puhan@ 123456uzh.ch (or @uzh_EBPI on Twitter)
                Author information
                https://orcid.org/0000-0003-4721-1879
                Article
                bmj-2022-074425.R1 balt074425
                10.1136/bmj-2022-074425
                10230608
                37257891
                d415832a-85c6-4b2d-bb01-acc675c236e7
                © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 17 April 2023
                Categories
                Research
                2474

                Medicine
                Medicine

                Comments

                Comment on this article