6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Highly sensitive and rapid detection of SARS‐CoV‐2 via a portable CRISPR‐Cas13a‐based lateral flow assay

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To rapidly identify individuals infected with severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) and control the spread of coronavirus disease (COVID‐19), there is an urgent need for highly sensitive on‐site virus detection methods. A clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein (Cas)‐based molecular diagnostic method was developed for this purpose. Here, a CRISPR system‐mediated lateral flow assay (LFA) for SARS‐CoV‐2 was established based on multienzyme isothermal rapid amplification, CRISPR‐Cas13a nuclease, and LFA. To improve the limit of detection (LoD), the crispr RNA, amplification primer, and probe were screened, in addition to concentrations of various components in the reaction system. The LoD of CRISPR detection was improved to 0.25 copy/μl in both fluorescence‐ and immunochromatography‐based assays. To enhance the quality control of the CRISPR‐based LFA method, glyceraldehyde‐3‐phosphate dehydrogenase was detected as a reference using a triple‐line strip design in a lateral flow strip. In total, 52 COVID‐19‐positive and 101 COVID‐19‐negative clinical samples examined by reverse transcription polymerase chain reaction (RT‐PCR) were tested using the CRISPR immunochromatographic detection technique. Results revealed 100% consistency, indicating the comparable effectiveness of our method to that of RT‐PCR. In conclusion, this approach significantly improves the sensitivity and reliability of CRISPR‐mediated LFA and provides a crucial tool for on‐site detection of SARS‐CoV‐2.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          A Novel Coronavirus from Patients with Pneumonia in China, 2019

          Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR

            Background The ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur. Aim We aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available. Methods Here we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology. Results The workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive – Global (EVAg), a European Union infrastructure project. Conclusion The present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CRISPR-Cas12–based detection of SARS-CoV-2

              An outbreak of betacoronavirus SARS-CoV-2 began in Wuhan, China in December 2019. COVID-19, the disease associated with infection, rapidly spread to produce a global pandemic. We report development of a rapid (<40 min), easy-to-implement and accurate CRISPR-Cas12-based lateral flow assay for detection of SARS-CoV-2 from respiratory swab RNA extracts. We validated our method using contrived reference samples and clinical samples from US patients, including 36 patients with COVID-19 infection and 42 patients with other viral respiratory infections. Our CRISPR-based DETECTR assay provides a visual and faster alternative to the US CDC SARS-CoV-2 real-time RT-PCR assay, with 95% positive predictive agreement and 100% negative predictive agreement.. SARS-CoV-2 in patient samples is detected in under an hour using a CRISPR-based lateral flow assay.
                Bookmark

                Author and article information

                Contributors
                lizhenjun@icdc.cn
                sqwang@bmi.ac.cn
                qiushf0613@hotmail.com
                hongbinsong@263.net
                Journal
                J Med Virol
                J Med Virol
                10.1002/(ISSN)1096-9071
                JMV
                Journal of Medical Virology
                John Wiley and Sons Inc. (Hoboken )
                0146-6615
                1096-9071
                05 September 2022
                05 September 2022
                : 10.1002/jmv.28096
                Affiliations
                [ 1 ] Chinese PLA Center for Disease Control and Prevention Beijing China
                [ 2 ] Department of Epidemiology, College of Public Health Zhengzhou University Zhengzhou China
                [ 3 ] State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention Chinese Center for Disease Control and Prevention Beijing China
                [ 4 ] Beijing Institute of Microbiology and Epidemiology Beijing China
                Author notes
                [*] [* ] Correspondence Zhenjun Li, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

                Email: lizhenjun@ 123456icdc.cn

                Shengqi Wang, Beijing Institute of Microbiology and Epidemiology, Beijing, China.

                Email: sqwang@ 123456bmi.ac.cn

                Shaofu Qiu and Hongbin Song, Chinese PLA Center for Disease Control and Prevention, NO.20 Dongda St, Fengtai District, Beijing, China.

                Email: qiushf0613@ 123456hotmail.com and hongbinsong@ 123456263.net

                Article
                JMV28096
                10.1002/jmv.28096
                9538558
                36029033
                9a0bd26d-91f2-4b62-b585-fec2d777f8b3
                © 2022 The Authors. Journal of Medical Virology published by Wiley Periodicals LLC.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 17 August 2022
                : 20 June 2022
                : 24 August 2022
                Page count
                Figures: 5, Tables: 1, Pages: 9, Words: 4778
                Funding
                Funded by: National Science and Technology Major Project of China (2021YFC2301102)
                Funded by: National Science Foundation of China (81873968, 32141003)
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                corrected-proof
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.2.0 mode:remove_FC converted:07.10.2022

                Microbiology & Virology
                crispr,lateral flow assay,sars‐cov‐2,sensitive detection
                Microbiology & Virology
                crispr, lateral flow assay, sars‐cov‐2, sensitive detection

                Comments

                Comment on this article