8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nordic walking with an integrated resistance shock absorber affects the femur strength and muscles torques in postmenopausal women

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Deterioration of the structure and function of the musculoskeletal system represents a significant problem during aging and intervention with a suitable load of physical activity may improve the quality of life. Nordic walking (NW) has become a popular and easily accessible form of activity, especially for older adults people around the world. Thus, the purpose of the study was to evaluate the influence of an Nordic walking training program with classic poles (NW) and with integrated resistance shock absorber (RSA) on bone mineral density and the peak torques of upper limb muscles and to compare the effects of both intervention programs. 25 women were randomly assigned to two training groups: 10 subjects using RSA (68 ± 4.19 years) and 15 subjects using NW poles (65 ± 3.40 years), which completed 8 weeks of training program. The hip, spine and forearm areal bone mineral density, torques of the flexors and extensors at the elbow and shoulder joints were measured before starting the training programs and after their completion. The most significant effect was found in differences between the two groups of women with respect to the femur strength index (p = 0.047) and the ratio of the flexors to extensors in the elbow (p = 0.049) and shoulder (p = 0.001) joints and peak torque of flexors in the shoulder joint (p = 0.001) for the left arm. A significant difference was also found in the index of torque asymmetry of flexors in the shoulder joint (p = 0.002). The study shows that Nordic walking with RSA poles for postmenopausal women led to beneficial changes in the femur strength index. However, we found no significant influence on bone mineral density values measured on the whole body, the femoral neck, forearm or lumbar spine regions. The occurrence of asymmetry in biomechanical muscle parameters, which was observed using RSA poles, may suggest the necessity of systematic controlling the gait technique to avoid the adverse consequences of asymmetrical rotation of the lumbar spine.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis

          Background Understanding the effects of gait speed on biomechanical variables is fundamental for a proper evaluation of alterations in gait, since pathological individuals tend to walk slower than healthy controls. Therefore, the aim of the study was to perform a systematic review of the effects of gait speed on spatiotemporal parameters, joint kinematics, joint kinetics, and ground reaction forces in healthy children, young adults, and older adults. Methods A systematic electronic search was performed on PubMed, Embase, and Web of Science databases to identify studies published between 1980 and 2019. A modified Quality Index was applied to assess methodological quality, and effect sizes with 95% confidence intervals were calculated as the standardized mean differences. For the meta-analyses, a fixed or random effect model and the statistical heterogeneity were calculated using the I 2 index. Results Twenty original full-length studies were included in the final analyses with a total of 587 healthy individuals evaluated, of which four studies analyzed the gait pattern of 227 children, 16 studies of 310 young adults, and three studies of 59 older adults. In general, gait speed affected the amplitude of spatiotemporal gait parameters, joint kinematics, joint kinetics, and ground reaction forces with a decrease at slow speeds and increase at fast speeds in relation to the comfortable speed. Specifically, moderate-to-large effect sizes were found for each age group and speed: children (slow, − 3.61 to 0.59; fast, − 1.05 to 2.97), young adults (slow, − 3.56 to 4.06; fast, − 4.28 to 4.38), and older adults (slow, − 1.76 to 0.52; fast, − 0.29 to 1.43). Conclusions This review identified that speed affected the gait patterns of different populations with respect to the amplitude of spatiotemporal parameters, joint kinematics, joint kinetics, and ground reaction forces. Specifically, most of the values analyzed decreased at slower speeds and increased at faster speeds. Therefore, the effects of speed on gait patterns should also be considered when comparing the gait analysis of pathological individuals with normal or control ones. Electronic supplementary material The online version of this article (10.1186/s13643-019-1063-z) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hip fracture epidemiological trends, outcomes, and risk factors, 1970–2009

            Ray Marks (2010)
            Hip fractures – which commonly lead to premature death, high rates of morbidity, or reduced life quality – have been the target of a voluminous amount of research for many years. But has the lifetime risk of incurring a hip fracture decreased sufficiently over the last decade or are high numbers of incident cases continuing to prevail, despite a large body of knowledge and a variety of contemporary preventive and refined surgical approaches? This review examines the extensive hip fracture literature published in the English language between 1980 and 2009 concerning hip fracture prevalence trends, and injury mechanisms. It also highlights the contemporary data concerning the personal and economic impact of the injury, plus potentially remediable risk factors underpinning the injury and ensuing disability. The goal was to examine if there is a continuing need to elucidate upon intervention points that might minimize the risk of incurring a hip fracture and its attendant consequences. Based on this information, it appears hip fractures remain a serious global health issue, despite some declines in the incidence rate of hip fractures among some women. Research also shows widespread regional, ethnic and diagnostic variations in hip fracture incidence trends. Key determinants of hip fractures include age, osteoporosis, and falls, but some determinants such as socioeconomic status, have not been well explored. It is concluded that while more research is needed, well-designed primary, secondary, and tertiary preventive efforts applied in both affluent as well as developing countries are desirable to reduce the present and future burden associated with hip fracture injuries. In this context, and in recognition of the considerable variation in manifestation and distribution, as well as risk factors underpinning hip fractures, well-crafted comprehensive, rather than single solutions, are strongly indicated in early rather than late adulthood.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Role of exercise in age-related sarcopenia

              Sarcopenia is an age-associated decline of skeletal muscle mass and function and is known to lead to frailty, cachexia, osteoporosis, metabolic syndromes, and death. Notwithstanding the increasing incidence of sarcopenia, the molecular and cellular mechanisms driving age-related sarcopenia are not completely understood. This article reviews current definitions of sarcopenia, its potential mechanisms, and effects of exercise on sarcopenia. The pathogenesis of age-related sarcopenia is multifactorial and includes myostatin, inflammatory cytokines, and mitochondria-derived problems. Especially, age-induced mitochondrial dysfunction triggers the production of reactive oxygen species (ROS) by mitochondria, impedes mitochondrial dynamics, interrupts mitophagy, and leads to mitochondria-mediated apoptosis. Aerobic exercise provides at least a partial solution to sarcopenia as it ameliorates mitochondria-derived problems, and resistance exercise strengthens muscle mass and function. Furthermore, combinations of these exercise types provide the benefits of both. Collectively, this review summarizes potential mechanisms of age-related sarcopenia and emphasizes the use of exercise as a therapeutic strategy, suggesting that combined exercise provides the most beneficial means of combating age-related sarcopenia.
                Bookmark

                Author and article information

                Contributors
                kwochna@awf.poznan.pl
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                22 November 2022
                22 November 2022
                2022
                : 12
                : 20089
                Affiliations
                [1 ]Laboratory of Swimming and Water Lifesaving, Poznan University of Physical Education, Krolowej Jadwigi 27/39, 61-871 Poznan, Poland
                [2 ]Department of Biomechanics, Poznan University of Physical Education, 61-871 Poznan, Poland
                [3 ]GRID grid.22254.33, ISNI 0000 0001 2205 0971, Department of Rheumatology, Rehabilitation and Internal Medicine, , Poznan University of Medical Sciences, ; 61-701 Poznan, Poland
                [4 ]Department of Digital Technologies in Physical Activity, Poznan University of Physical Education, 61-871 Poznan, Poland
                [5 ]Department of Hygiene, Poznan University of Physical Education, 61-871 Poznan, Poland
                Author information
                https://orcid.org/0000-0001-9261-1332
                Article
                24131
                10.1038/s41598-022-24131-7
                9684118
                36418455
                0bafd81a-a20a-4454-9d2e-b39ecbf4e083
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 July 2022
                : 10 November 2022
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                medical research,rheumatology,risk factors
                Uncategorized
                medical research, rheumatology, risk factors

                Comments

                Comment on this article