12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      USP15 regulates dynamic protein-protein interactions of the spliceosome through deubiquitination of PRP31.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Post-translational modifications contribute to the spliceosome dynamics by facilitating the physical rearrangements of the spliceosome. Here, we report USP15, a deubiquitinating enzyme, as a regulator of protein-protein interactions for the spliceosome dynamics. We show that PRP31, a component of U4 snRNP, is modified with K63-linked ubiquitin chains by the PRP19 complex and deubiquitinated by USP15 and its substrate targeting factor SART3. USP15SART3 makes a complex with USP4 and this ternary complex serves as a platform to deubiquitinate PRP31 and PRP3. The ubiquitination and deubiquitination status of PRP31 regulates its interaction with the U5 snRNP component PRP8, which is required for the efficient splicing of chromosome segregation related genes, probably by stabilizing the U4/U6.U5 tri-snRNP complex. Collectively, our data suggest that USP15 plays a key role in the regulation of dynamic protein-protein interactions of the spliceosome.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Defining the human deubiquitinating enzyme interaction landscape.

          Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA and disease.

            Cellular functions depend on numerous protein-coding and noncoding RNAs and the RNA-binding proteins associated with them, which form ribonucleoprotein complexes (RNPs). Mutations that disrupt either the RNA or protein components of RNPs or the factors required for their assembly can be deleterious. Alternative splicing provides cells with an exquisite capacity to fine-tune their transcriptome and proteome in response to cues. Splicing depends on a complex code, numerous RNA-binding proteins, and an enormously intricate network of interactions among them, increasing the opportunity for exposure to mutations and misregulation that cause disease. The discovery of disease-causing mutations in RNAs is yielding a wealth of new therapeutic targets, and the growing understanding of RNA biology and chemistry is providing new RNA-based tools for developing therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonproteolytic functions of ubiquitin in cell signaling.

              The small protein ubiquitin is a central regulator of a cell's life and death. Ubiquitin is best known for targeting protein destruction by the 26S proteasome. In the past few years, however, nonproteolytic functions of ubiquitin have been uncovered at a rapid pace. These functions include membrane trafficking, protein kinase activation, DNA repair, and chromatin dynamics. A common mechanism underlying these functions is that ubiquitin, or polyubiquitin chains, serves as a signal to recruit proteins harboring ubiquitin-binding domains, thereby bringing together ubiquitinated proteins and ubiquitin receptors to execute specific biological functions. Recent advances in understanding ubiquitination in protein kinase activation and DNA repair are discussed to illustrate the nonproteolytic functions of ubiquitin in cell signaling.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res.
                Nucleic acids research
                Oxford University Press (OUP)
                1362-4962
                0305-1048
                May 05 2017
                : 45
                : 8
                Affiliations
                [1 ] Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
                [2 ] Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu 02792, Seoul, Korea.
                [3 ] Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
                [4 ] Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
                Article
                gkw1365
                10.1093/nar/gkw1365
                5416801
                28088760
                28cf0326-b2d6-4cb4-8338-403fc59aa17c
                History

                Comments

                Comment on this article