Average rating: | Rated 3.5 of 5. |
Level of importance: | Rated 4 of 5. |
Level of validity: | Rated 3 of 5. |
Level of completeness: | Rated 4 of 5. |
Level of comprehensibility: | Rated 3 of 5. |
Competing interests: | None |
ScienceOpen disciplines: | Earth & Environmental sciences, Engineering |
Keywords: | The Environment, Engineering model, Covid-19, Recommendations |
Review of “An Engineering Model of the COVID-19 Trajectory to Predict Success of Isolation Initiatives” by King and Striolo
In this article, King and Striolo have developed a simple engineering model to understand the trajectory of COVID-19 cases. The model is based on three population-related variables and two rate constants. The model also takes into account the effect of intervention strategies applied by the government by scaling down the growth rate of cases. The authors applied this simple model to WHO data from three countries around the world, namely China, Singapore, and South Korea. The authors have also applied the model to the COVID trajectory in the U.K. during the revisions. Although the model is simple and cannot be used to inform complex and far-reaching public health decisions, as the authors rightly caution, the model results in some notable conclusions regarding the pandemic and lockdown strategies to contain it. Over the course of the previous two rounds of review, the authors have improved the manuscript based on the suggestions made. Nevertheless, the manuscript may be improved further by implementing the following revisions, prior to publication: