Tracking and measuring national carbon footprints is one of the keys to achieving the ambitious goals set by countries. According to statistics, more than 10\% of global transportation carbon emissions result from shipping. However, accurate tracking of the emissions of the small boat segment is not well established. Past research has begun to look into the role played by small boat fleets in terms of Greenhouse Gases (GHG), but this either relies on high-level techno-activity assumptions or the installation of GPS sensors to understand how this vessel class behaves. This research is undertaken mainly in relation to fishing and recreational boats. With the advent of open-access satellite imagery and its ever-increasing resolution, it can support innovative methodologies that could eventually lead to the quantification of GHG emissions. This work used deep learning algorithms to detect small boats in three cities in the Gulf of California in Mexico. The work produced a methodology named BoatNet that can detect, measure and classify small boats even under low-resolution and blurry satellite images, achieving an accuracy of 93.9% with a precision of 74.0%. Future work should focus on attributing a boat activity to fuel consumption and operational profile to estimate small boat GHG emissions in any given region. The data curated and produced in this study is freely available at https://github.com/theiresearch/BoatNet.