Multi-temporal remote sensing imagery can be used to explore how mangrove assemblages are changing over time and facilitate critical interventions for ecological sustainability and effective management. This study aims to explore the spatial dynamics of mangrove extents in Palawan, Philippines, specifically in Puerto Princesa City (PPC), Taytay, and Aborlan, and facilitate future prediction for Palawan using the Markov Chain model. The multi-date Landsat imageries during the period 1988–2020 were used for this research. The Support Vector Machine algorithm was sufficiently effective for mangrove feature extraction to generate satisfactory accuracy results (>70% Kappa coefficient values; 91% average overall accuracies). In Palawan, a 5.2% (2,693 ha) decrease was recorded during 1988–1998 and an 8.6% increase in 2013–2020 to 4,371 ha. In PPC, 95.9% (2,758 ha) increase was observed during 1988–1998 and 2.0% (136 ha) decrease during 2013–2020. The mangroves in Taytay and Aborlan both gained an additional 2,138 ha (55.3%) and 228 ha (16.8%) during 1988–1998 but also decreased from 2013 to 2020 by 3.4% (247 ha) and 0.2% (3 ha), respectively. However, projected results suggest that the mangrove areas in Palawan will likely increase in 2030 (to 64,946 ha) and 2050 (to 66,972 ha). This study demonstrated the capability of the Markov Chain model in the context of ecological sustainability involving policy intervention. However, since this research did not capture the environmental factors that may had influenced the changes in mangrove patterns, it is suggested the addition of Cellular Automata in future Markovian mangrove modelling.