18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inadequacy of typical physiological experimental protocols for investigating consequences of stochastic weather events emerging from global warming

      1
      American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increasingly variable, extreme, and nonpredictable weather events are predicted to accompany climate change, and such weather events will especially affect temperate, terrestrial environments. Yet, typical protocols in comparative physiology that examine environmental change typically employ simple step-wise changes in the experimental stressor of interest (e.g., temperature, water availability, oxygen, nutrition). Such protocols fall short of mimicking actual natural environments and may be inadequate for fully exploring the physiological effects of stochastic, extreme weather events. Indeed, numerous studies from the field of thermal biology, especially, indicate nonlinear and sometimes counterintuitive findings associated with variable and fluctuating (but rarely truly stochastic) protocols for temperature change. This Perspective article suggests that alternative experimental protocols should be employed that go beyond step-wise protocols and even beyond variable protocols employing circadian rhythms, for example, to those that actually embrace nonpredictable elements. Such protocols, though admittedly more difficult to implement, are more likely to reveal the capabilities (and, importantly, the limitations) of animals experiencing weather, as distinct from climate. While some possible protocols involving stochasticity are described as examples to stimulate additional thought on experimental design, the overall goal of this Perspective article is to encourage comparative physiologists to entertain incorporation of nonpredictable experimental conditions as they design future experimental protocols.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Book: not found

          Thermal Adaptation

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased temperature variation poses a greater risk to species than climate warming

            Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change. Here, we couple fine-grained climate projections (2050-2059) to thermal performance data from 38 ectothermic invertebrate species and contrast projections with those of a simple model. We show that projections based on mean temperature change alone differ substantially from those incorporating changes to the variation, and to the mean and variation in concert. Although most species show increases in performance at greater mean temperatures, the effect of mean and variance change together yields a range of responses, with temperate species at greatest risk of performance declines. Our work highlights the importance of using fine-grained temporal data to incorporate the full extent of temperature variation when assessing and projecting performance.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Impacts of Extreme Weather and Climate on Terrestrial Biota*

                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
                American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
                American Physiological Society
                0363-6119
                1522-1490
                April 01 2019
                April 01 2019
                : 316
                : 4
                : R318-R322
                Affiliations
                [1 ]Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, Texas
                Article
                10.1152/ajpregu.00307.2018
                6483216
                30698987
                fc88acfe-9c7e-4d47-80c8-632e649adb40
                © 2019
                History

                Comments

                Comment on this article