36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Scelidosaurus harrisonii (Dinosauria: Ornithischia) from the Early Jurassic of Dorset, England: biology and phylogenetic relationships

      1 , 2
      Zoological Journal of the Linnean Society
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A layer of keratinous scutes encased the skull of Scelidosaurus. The neurocranium and the associated principal sensory systems of this dinosaur are described. The cranial musculature is reconstructed and a subsequent functional analysis suggests that jaw motion was orthal, allowing pulping of vegetation and some high-angle shearing between opposing teeth. Wishboning of the lower jaw was enabled by transverse displacement of the quadrates, and the long-axis mandibular torsion that occurred during the chewing cycle was permitted by flexibility at the dentary symphysis. Limb proportions and pectoral and pelvic musculature reconstructions suggest that Scelidosaurus was a facultative quadruped of ‘average’ locomotor ability. It retained some anatomical features indicative of a bipedal-cursorial ancestry. Hindlimb motion was oblique-to-parasagittal to accommodate the girth of the abdomen. Scelidosaurus used a combination of costal and abdominally driven aspiration. The hypothesis that respiration was an ‘evolutionary driver’ of opisthopuby in all dinosaurs is overly simplistic. A critical assessment of datasets used to analyse the systematics of ornithischians (and thyreophoran subclades) has led to a revised dataset that positions Scelidosaurus as a stem ankylosaur, rather than a stem thyreophoran. The value of phylogenetic definitions is reconsidered in the light of the new thyreophoran cladogram.

          Related collections

          Most cited references143

          • Record: found
          • Abstract: found
          • Article: not found

          The evolution of dinosaurs.

          The ascendancy of dinosaurs on land near the close of the Triassic now appears to have been as accidental and opportunistic as their demise and replacement by therian mammals at the end of the Cretaceous. The dinosaurian radiation, launched by 1-meter-long bipeds, was slower in tempo and more restricted in adaptive scope than that of therian mammals. A notable exception was the evolution of birds from small-bodied predatory dinosaurs, which involved a dramatic decrease in body size. Recurring phylogenetic trends among dinosaurs include, to the contrary, increase in body size. There is no evidence for co-evolution between predators and prey or between herbivores and flowering plants. As the major land masses drifted apart, dinosaurian biogeography was molded more by regional extinction and intercontinental dispersal than by the breakup sequence of Pangaea.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Methods for Computing Wagner Trees

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Biology of the sauropod dinosaurs: the evolution of gigantism

              The herbivorous sauropod dinosaurs of the Jurassic and Cretaceous periods were the largest terrestrial animals ever, surpassing the largest herbivorous mammals by an order of magnitude in body mass. Several evolutionary lineages among Sauropoda produced giants with body masses in excess of 50 metric tonnes by conservative estimates. With body mass increase driven by the selective advantages of large body size, animal lineages will increase in body size until they reach the limit determined by the interplay of bauplan, biology, and resource availability. There is no evidence, however, that resource availability and global physicochemical parameters were different enough in the Mesozoic to have led to sauropod gigantism. We review the biology of sauropod dinosaurs in detail and posit that sauropod gigantism was made possible by a specific combination of plesiomorphic characters (phylogenetic heritage) and evolutionary innovations at different levels which triggered a remarkable evolutionary cascade. Of these key innovations, the most important probably was the very long neck, the most conspicuous feature of the sauropod bauplan. Compared to other herbivores, the long neck allowed more efficient food uptake than in other large herbivores by covering a much larger feeding envelope and making food accessible that was out of the reach of other herbivores. Sauropods thus must have been able to take up more energy from their environment than other herbivores. The long neck, in turn, could only evolve because of the small head and the extensive pneumatization of the sauropod axial skeleton, lightening the neck. The small head was possible because food was ingested without mastication. Both mastication and a gastric mill would have limited food uptake rate. Scaling relationships between gastrointestinal tract size and basal metabolic rate (BMR) suggest that sauropods compensated for the lack of particle reduction with long retention times, even at high uptake rates. The extensive pneumatization of the axial skeleton resulted from the evolution of an avian-style respiratory system, presumably at the base of Saurischia. An avian-style respiratory system would also have lowered the cost of breathing, reduced specific gravity, and may have been important in removing excess body heat. Another crucial innovation inherited from basal dinosaurs was a high BMR. This is required for fueling the high growth rate necessary for a multi-tonne animal to survive to reproductive maturity. The retention of the plesiomorphic oviparous mode of reproduction appears to have been critical as well, allowing much faster population recovery than in megaherbivore mammals. Sauropods produced numerous but small offspring each season while land mammals show a negative correlation of reproductive output to body size. This permitted lower population densities in sauropods than in megaherbivore mammals but larger individuals. Our work on sauropod dinosaurs thus informs us about evolutionary limits to body size in other groups of herbivorous terrestrial tetrapods. Ectothermic reptiles are strongly limited by their low BMR, remaining small. Mammals are limited by their extensive mastication and their vivipary, while ornithsichian dinosaurs were only limited by their extensive mastication, having greater average body sizes than mammals.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Zoological Journal of the Linnean Society
                Oxford University Press (OUP)
                0024-4082
                1096-3642
                August 18 2020
                August 18 2020
                Affiliations
                [1 ]Department of Earth Sciences, University of Cambridge, UK
                [2 ]Christ’s College, St. Andrew’s Street, Cambridge, UK
                Article
                10.1093/zoolinnean/zlaa061
                f9ed62c2-f823-4769-addc-cfd61248ec2f
                © 2020

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article