20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Suitability of Black Soldier Fly Frass as Soil Amendment and Implication for Organic Waste Hygienization

      , , , ,
      Agronomy
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Because of its nutritious properties, the black soldier fly has emerged as one of the most popular species in advancing circular economy through the re-valorization of anthropogenic organic wastes to insect biomass. Black soldier fly frass accumulates as a major by-product in artificial rearing set-ups and harbors great potential to complement or replace commercial fertilizers. We applied frass from larvae raised on different diets in nitrogen-equivalent amounts as soil amendment, comparing it to NH4NO3 fertilizer as a control. While the soil properties did not reveal any difference between mineral fertilizer and frass, principal component analysis showed significant differences that are mainly attributed to nitrate and dissolved nitrogen contents. We did not find significant differences in the growth of perennial ryegrass between the treatments, indicating that frass serves as a rapidly acting fertilizer comparable to NH4NO3. While the abundance of coliform bacteria increased during frass maturation, after application to the soil, they were outcompeted by gram-negatives. We thus conclude that frass may serve as a valuable fertilizer and does not impair the hygienic properties of soils.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Chitin--the undisputed biomolecule of great potential.

          Of the truly abundant polysaccharides in Nature, only chitin has yet to find utilization in large quantity. Chitin is the second most abundant natural biopolymer derived from exoskeletons of crustaceans and also from cell walls of fungi and insects. Chitin is a linear beta 1,4-linked polymer of N-acetyl-D-glucosamine (GlcNAc), whereas chitosan, a copolymer of GlcNAc (approximately 20%) and glucosamine (GlcN, 80%) residues, is a product derived from de-N-acetylation of chitin in the presence of hot alkali. Chitosan is, in fact, a collective name representing a family of de-N-acetylated chitins deacetylated to different degrees. Both chitin/chitosan and their modified derivatives find extensive applications in medicine, agriculture, food, and non-food industries as well. They have emerged as a new class of physiological materials of highly sophisticated functions. Their application versatility is a great challenge to the scientific community and to industry. All these are the result of their versatile biological activity, excellent biocompatibility, and complete biodegradability in combination with low toxicity. Commercial availability of high-purity forms of chitin/chitosan and the continuous appearance of new types of chitin/chitosan derivatives with more and more useful and specific properties have led to an unlimited R&D efforts on this most versatile amino polysaccharide, chitin to find new applications, which are necessary to realize its full potential. Incidentally, this too has become an environmental priority. No doubt, chitin is surely an undisputed biomolecule of great potential.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            ECOLOGY. Soil immune responses.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as ph, on the microbial biomass of forest soils

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ABSGGL
                Agronomy
                Agronomy
                MDPI AG
                2073-4395
                October 2020
                October 15 2020
                : 10
                : 10
                : 1578
                Article
                10.3390/agronomy10101578
                f84e0ec1-066b-4a10-a17f-49a77a801086
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article