11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      ECOLOGY. Soil immune responses.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Engineering Microbiomes to Improve Plant and Animal Health.

          Animal and plant microbiomes encompass diverse microbial communities that colonize every accessible host tissue. These microbiomes enhance host functions, contributing to host health and fitness. A novel approach to improve animal and plant fitness is to artificially select upon microbiomes, thus engineering evolved microbiomes with specific effects on host fitness. We call this engineering approach host-mediated microbiome selection, because this method selects upon microbial communities indirectly through the host and leverages host traits that evolved to influence microbiomes. In essence, host phenotypes are used as probes to gauge and manipulate those microbiome functions that impact host fitness. To facilitate research on host-mediated microbiome engineering, we explain and compare the principal methods to impose artificial selection on microbiomes; discuss advantages and potential challenges of each method; offer a skeptical appraisal of each method in light of these potential challenges; and outline experimental strategies to optimize microbiome engineering. Finally, we develop a predictive framework for microbiome engineering that organizes research around principles of artificial selection, quantitative genetics, and microbial community-ecology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Streptomyces competition and co-evolution in relation to plant disease suppression.

            High densities of antagonistic Streptomyces are associated with plant disease suppression in many soils. Here we review use of inoculation and organic matter amendments for enriching antagonistic Streptomyces populations to reduce plant disease and note that effective and consistent disease suppression in response to management has been elusive. We argue that shifting the focus of research from short-term disease suppression to the population ecology and evolutionary biology of antagonistic Streptomyces in soil will enhance prospects for effective management. A framework is presented for considering the impacts of short- and long-term management on competitive and coevolutionary dynamics among Streptomyces populations in relation to disease suppression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brassica seed meal soil amendments transform the rhizosphere microbiome and improve apple production through resistance to pathogen reinfestation.

              Brassicaceae seed meal (SM) formulations were compared with preplant 1,3-dichloropropene/chloropicrin (Telone-C17) soil fumigation for the ability to control apple replant disease and to suppress pathogen or parasite reinfestation of organic orchard soils at two sites in Washington State. Preplant soil fumigation and an SM formulation consisting of either Brassica juncea-Sinapis alba or B. juncea-B. napus each provided similar levels of disease control during the initial growing season. Although tree growth was similar in fumigated and SM-amended soil during the initial growing season, tree performance in terms of growth and yield was commonly superior in B. juncea-S. alba SM-amended soil relative to that in fumigated soil at the end of four growing seasons. SM-amended soils were resistant to reinfestation by Pratylenchus penetrans and Pythium spp. relative to fumigated soils and corresponded with enhanced tree performance. Phytotoxic symptoms were observed in response to SM amendment at one of two orchard sites, were dependent upon season of application, and occurred in an SM formulation-specific manner. After 2 years, the rhizosphere microbiome in fumigated soils had reverted to one that was indistinguishable from the no-treatment control. In contrast, rhizosphere soils from the SM treatment possessed unique bacterial and fungal profiles, including specific microbial elements previously associated with suppression of plant-pathogenic fungi, oomycetes, and nematodes. Overall diversity of the microbiome was reduced in the SM treatment rhizosphere, suggesting that enhanced "biodiversity" was not instrumental in achieving system resistance or pathogen suppression.
                Bookmark

                Author and article information

                Journal
                Science
                Science (New York, N.Y.)
                American Association for the Advancement of Science (AAAS)
                1095-9203
                0036-8075
                Jun 17 2016
                : 352
                : 6292
                Affiliations
                [1 ] Netherlands Institute of Ecology, Royal Netherlands Academy of Arts and Sciences, Wageningen, Netherlands. Institute of Biology, Leiden University, Leiden, Netherlands. j.raaijmakers@nioo.knaw.nl.
                [2 ] U.S. Department of Agriculture-Agricultural Research Service, Wenatchee, WA, USA.
                Article
                352/6292/1392
                10.1126/science.aaf3252
                27313024
                6d5ca872-24f1-46ac-a053-ef7f921b966f
                History

                Comments

                Comment on this article