0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biomimetic Design of Double-Sided Functionalized Silver Nanoparticle/Bacterial Cellulose/Hydroxyapatite Hydrogel Mesh for Temporary Cranioplasty.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A structurally stable and antibacterial biomaterial used for temporary cranioplasty with guided bone regeneration (GBR) effects is an urgent clinical requirement. Herein, we reported the design of a biomimetic Ag/bacterial cellulose/hydroxyapatite (Ag/BC@HAp) hydrogel mesh with a double-sided functionalized structure, in which one layer was dense and covered with Ag nanoparticles and the other layer was porous and anchored with hydroxyapatite (HAp) via mineralization for different durations. Such a double-sided functionalized design endowed the hydrogel with distinguished antibacterial activities for inhibiting potential infections and GBR effects that could prevent endothelial cells and fibroblasts from migrating to a defected area and meanwhile show biocompatibility to MC3T3-E1 preosteoblasts. Furthermore, it was found from in vivo experimental results that the Ag/BC@HAp hydrogel with 7-day mineralization achieved optimal GBR effects by improving barrier functions toward these undesired cells. Moreover, this BC-based hydrogel mesh showed an extremely low swelling ratio and strong mechanical strength, which facilitated the protection of soft brain tissues without gaining the risk of intracranial pressure increase. In a word, this study offers a new approach to double-sided functionalized hydrogels and provides effective and safe biomaterials used for temporary cranioplasty with antibacterial abilities and GBR effects.

          Related collections

          Author and article information

          Journal
          ACS Appl Mater Interfaces
          ACS applied materials & interfaces
          American Chemical Society (ACS)
          1944-8252
          1944-8244
          Mar 01 2023
          : 15
          : 8
          Affiliations
          [1 ] Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China.
          [2 ] Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China.
          Article
          10.1021/acsami.2c22771
          36800308
          f4894c93-b614-4cd6-8404-a69ffbf56e44
          History

          hydroxyapatite,hydrogel mesh,biomimetic structure,bacterial cellulose,temporary cranioplasty

          Comments

          Comment on this article