9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Challenges of Testing COVID-19 Cases in Bangladesh

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Keeping the dynamic nature of Coronaviruses (COVID-19) pandemic in mind, we have opted to explore the importance of the decentralization of COVID-19 testing centers across the country of Bangladesh in order to combat the pandemic. In doing so, we considered quantitative, qualitative, and geographic information systems (GIS) datasets to identify the location of existing COVID-19 testing centers. Moreover, we attempted to collect data from the existing centers in order to demonstrate testing times at the divisional level of the country. Results show that the number of testing centers is not enough to cater to the vast population of the country. Additionally, we found that the number of days it takes to receive the results from the COVID-19 testing centers is not optimal at divisional cities, let alone the remote rural areas. Finally, we propose a set of recommendations in order to enhance the existing system to assist more people under a testing range of COVID-19 viruses at the local level.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          WHO Declares COVID-19 a Pandemic

          The World Health Organization (WHO) on March 11, 2020, has declared the novel coronavirus (COVID-19) outbreak a global pandemic (1). At a news briefing, WHO Director-General, Dr. Tedros Adhanom Ghebreyesus, noted that over the past 2 weeks, the number of cases outside China increased 13-fold and the number of countries with cases increased threefold. Further increases are expected. He said that the WHO is “deeply concerned both by the alarming levels of spread and severity and by the alarming levels of inaction,” and he called on countries to take action now to contain the virus. “We should double down,” he said. “We should be more aggressive.” Among the WHO’s current recommendations, people with mild respiratory symptoms should be encouraged to isolate themselves, and social distancing is emphasized and these recommendations apply even to countries with no reported cases (2). Separately, in JAMA, researchers report that SARS-CoV-2, the virus that causes COVID-19, was most often detected in respiratory samples from patients in China. However, live virus was also found in feces. They conclude: “Transmission of the virus by respiratory and extrarespiratory routes may help explain the rapid spread of disease.”(3). COVID-19 is a novel disease with an incompletely described clinical course, especially for children. In a recente report W. Liu et al described that the virus causing Covid-19 was detected early in the epidemic in 6 (1.6%) out of 366 children (≤16 years of age) hospitalized because of respiratory infections at Tongji Hospital, around Wuhan. All these six children had previously been completely healthy and their clinical characteristics at admission included high fever (>39°C) cough and vomiting (only in four). Four of the six patients had pneumonia, and only one required intensive care. All patients were treated with antiviral agents, antibiotic agents, and supportive therapies, and recovered after a median 7.5 days of hospitalization. (4). Risk factors for severe illness remain uncertain (although older age and comorbidity have emerged as likely important factors), the safety of supportive care strategies such as oxygen by high-flow nasal cannula and noninvasive ventilation are unclear, and the risk of mortality, even among critically ill patients, is uncertain. There are no proven effective specific treatment strategies, and the risk-benefit ratio for commonly used treatments such as corticosteroids is unclear (3,5). Septic shock and specific organ dysfunction such as acute kidney injury appear to occur in a significant proportion of patients with COVID-19–related critical illness and are associated with increasing mortality, with management recommendations following available evidence-based guidelines (3). Novel COVID-19 “can often present as a common cold-like illness,” wrote Roman Wöelfel et al. (6). They report data from a study concerning nine young- to middle-aged adults in Germany who developed COVID-19 after close contact with a known case. All had generally mild clinical courses; seven had upper respiratory tract disease, and two had limited involvement of the lower respiratory tract. Pharyngeal virus shedding was high during the first week of symptoms, peaking on day 4. Additionally, sputum viral shedding persisted after symptom resolution. The German researchers say the current case definition for COVID-19, which emphasizes lower respiratory tract disease, may need to be adjusted(6). But they considered only young and “normal” subjecta whereas the story is different in frail comorbid older patients, in whom COVID 19 may precipitate an insterstitial pneumonia, with severe respiratory failure and death (3). High level of attention should be paid to comorbidities in the treatment of COVID-19. In the literature, COVID-19 is characterised by the symptoms of viral pneumonia such as fever, fatigue, dry cough, and lymphopenia. Many of the older patients who become severely ill have evidence of underlying illness such as cardiovascular disease, liver disease, kidney disease, or malignant tumours. These patients often die of their original comorbidities. They die “with COVID”, but were extremely frail and we therefore need to accurately evaluate all original comorbidities. In addition to the risk of group transmission of an infectious disease, we should pay full attention to the treatment of the original comorbidities of the individual while treating pneumonia, especially in older patients with serious comorbid conditions and polipharmacy. Not only capable of causing pneumonia, COVID-19 may also cause damage to other organs such as the heart, the liver, and the kidneys, as well as to organ systems such as the blood and the immune system. Patients die of multiple organ failure, shock, acute respiratory distress syndrome, heart failure, arrhythmias, and renal failure (5,6). What we know about COVID 19? In December 2019, a cluster of severe pneumonia cases of unknown cause was reported in Wuhan, Hubei province, China. The initial cluster was epidemiologically linked to a seafood wholesale market in Wuhan, although many of the initial 41 cases were later reported to have no known exposure to the market (7). A novel strain of coronavirus belonging to the same family of viruses that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), as well as the 4 human coronaviruses associated with the common cold, was subsequently isolated from lower respiratory tract samples of 4 cases on 7 January 2020. On 30 January 2020, the WHO declared that the SARS-CoV-2 outbreak constituted a Public Health Emergency of International Concern, and more than 80, 000 confirmed cases had been reported worldwide as of 28 February 2020 (8). On 31 January 2020, the U.S. Centers for Disease Control and Prevention announced that all citizens returning from Hubei province, China, would be subject to mandatory quarantine for up to 14 days. But from China COVID 19 arrived to many other countries. Rothe C et al reported a case of a 33-year-old otherwise healthy German businessman :she became ill with a sore throat, chills, and myalgias on January 24, 2020 (9). The following day, a fever of 39.1°C developed, along with a productive cough. By the evening of the next day, he started feeling better and went back to work on January 27. Before the onset of symptoms, he had attended meetings with a Chinese business partner at his company near Munich on January 20 and 21. The business partner, a Shanghai resident, had visited Germany between January 19 and 22. During her stay, she had been well with no signs or symptoms of infection but had become ill on her flight back to China, where she tested positive for 2019-nCoV on January 26. This case of 2019-nCoV infection was diagnosed in Germany and transmitted outside Asia. However, it is notable that the infection appears to have been transmitted during the incubation period of the index patient, in whom the illness was brief and nonspecific. The fact that asymptomatic persons are potential sources of 2019-nCoV infection may warrant a reassessment of transmission dynamics of the current outbreak (9). Our current understanding of the incubation period for COVID-19 is limited. An early analysis based on 88 confirmed cases in Chinese provinces outside Wuhan, using data on known travel to and from Wuhan to estimate the exposure interval, indicated a mean incubation period of 6.4 days (95% CI, 5.6 to 7.7 days), with a range of 2.1 to 11.1 days. Another analysis based on 158 confirmed cases outside Wuhan estimated a median incubation period of 5.0 days (CI, 4.4 to 5.6 days), with a range of 2 to 14 days. These estimates are generally consistent with estimates from 10 confirmed cases in China (mean incubation period, 5.2 days [CI, 4.1 to 7.0 days] and from clinical reports of a familial cluster of COVID-19 in which symptom onset occurred 3 to 6 days after assumed exposure in Wuhan (10-12). The incubation period can inform several important public health activities for infectious diseases, including active monitoring, surveillance, control, and modeling. Active monitoring requires potentially exposed persons to contact local health authorities to report their health status every day. Understanding the length of active monitoring needed to limit the risk for missing infections is necessary for health departments to effectively use resources. A recent paper provides additional evidence for a median incubation period for COVID-19 of approximately 5 days (13). Lauer et al suggest that 101 out of every 10 000 cases will develop symptoms after 14 days of active monitoring or quarantinen (13). Whether this rate is acceptable depends on the expected risk for infection in the population being monitored and considered judgment about the cost of missing cases. Combining these judgments with the estimates presented here can help public health officials to set rational and evidence-based COVID-19 control policies. Note that the proportion of mild cases detected has increased as surveillance and monitoring systems have been strengthened. The incubation period for these severe cases may differ from that of less severe or subclinical infections and is not typically an applicable measure for those with asymptomatic infections In conclusion, in a very short period health care systems and society have been severely challenged by yet another emerging virus. Preventing transmission and slowing the rate of new infections are the primary goals; however, the concern of COVID-19 causing critical illness and death is at the core of public anxiety. The critical care community has enormous experience in treating severe acute respiratory infections every year, often from uncertain causes. The care of severely ill patients, in particular older persons with COVID-19 must be grounded in this evidence base and, in parallel, ensure that learning from each patient could be of great importance to care all population,
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            The COVID‐19 epidemic

            The current outbreak of the novel coronavirus SARS‐CoV‐2 (coronavirus disease 2019; previously 2019‐nCoV), epi‐centred in Hubei Province of the People’s Republic of China, has spread to many other countries. On 30. January 2020, the WHO Emergency Committee declared a global health emergency based on growing case notification rates at Chinese and international locations. The case detection rate is changing daily and can be tracked in almost real time on the website provided by Johns Hopkins University 1 and other forums. As of midst of February 2020, China bears the large burden of morbidity and mortality, whereas the incidence in other Asian countries, in Europe and North America remains low so far. Coronaviruses are enveloped, positive single‐stranded large RNA viruses that infect humans, but also a wide range of animals. Coronaviruses were first described in 1966 by Tyrell and Bynoe, who cultivated the viruses from patients with common colds 2. Based on their morphology as spherical virions with a core shell and surface projections resembling a solar corona, they were termed coronaviruses (Latin: corona = crown). Four subfamilies, namely alpha‐, beta‐, gamma‐ and delta‐coronaviruses exist. While alpha‐ and beta‐coronaviruses apparently originate from mammals, in particular from bats, gamma‐ and delta‐viruses originate from pigs and birds. The genome size varies between 26 kb and 32 kb. Among the seven subtypes of coronaviruses that can infect humans, the beta‐coronaviruses may cause severe disease and fatalities, whereas alpha‐coronaviruses cause asymptomatic or mildly symptomatic infections. SARS‐CoV‐2 belongs to the B lineage of the beta‐coronaviruses and is closely related to the SARS‐CoV virus 3, 4. The major four structural genes encode the nucleocapsid protein (N), the spike protein (S), a small membrane protein (SM) and the membrane glycoprotein (M) with an additional membrane glycoprotein (HE) occurring in the HCoV‐OC43 and HKU1 beta‐coronaviruses 5. SARS‐CoV‐2 is 96% identical at the whole‐genome level to a bat coronavirus 4. SARS‐CoV‐2 apparently succeeded in making its transition from animals to humans on the Huanan seafood market in Wuhan, China. However, endeavours to identify potential intermediate hosts seem to have been neglected in Wuhan and the exact route of transmission urgently needs to be clarified. The initial clinical sign of the SARS‐CoV‐2‐related disease COVID‐19 which allowed case detection was pneumonia. More recent reports also describe gastrointestinal symptoms and asymptomatic infections, especially among young children 6. Observations so far suggest a mean incubation period of five days 7 and a median incubation period of 3 days (range: 0–24 days) 8. The proportion of individuals infected by SARS‐CoV‐2 who remain asymptomatic throughout the course of infection has not yet been definitely assessed. In symptomatic patients, the clinical manifestations of the disease usually start after less than a week, consisting of fever, cough, nasal congestion, fatigue and other signs of upper respiratory tract infections. The infection can progress to severe disease with dyspnoea and severe chest symptoms corresponding to pneumonia in approximately 75% of patients, as seen by computed tomography on admission 8. Pneumonia mostly occurs in the second or third week of a symptomatic infection. Prominent signs of viral pneumonia include decreased oxygen saturation, blood gas deviations, changes visible through chest X‐rays and other imaging techniques, with ground glass abnormalities, patchy consolidation, alveolar exudates and interlobular involvement, eventually indicating deterioration. Lymphopenia appears to be common, and inflammatory markers (C‐reactive protein and proinflammatory cytokines) are elevated. Recent investigations of 425 confirmed cases demonstrate that the current epidemic may double in the number of affected individuals every seven days and that each patient spreads infection to 2.2 other individuals on average (R0) 6. Estimates from the SARS‐CoV outbreak in 2003 reported an R0 of 3 9. A recent data‐driven analysis from the early phase of the outbreak estimates a mean R0 range from 2.2 to 3.58 10. Dense communities are at particular risk and the most vulnerable region certainly is Africa, due to dense traffic between China and Africa. Very few African countries have sufficient and appropriate diagnostic capacities and obvious challenges exist to handle such outbreaks. Indeed, the virus might soon affect Africa. WHO has identified 13 top‐priority countries (Algeria, Angola, Cote d’Ivoire, the Democratic Republic of the Congo, Ethiopia, Ghana, Kenya, Mauritius, Nigeria, South Africa, Tanzania, Uganda, Zambia) which either maintain direct links to China or a high volume of travel to China. Recent studies indicate that patients ≥60 years of age are at higher risk than children who might be less likely to become infected or, if so, may show milder symptoms or even asymptomatic infection 7. As of 13. February 2020, the case fatality rate of COVID‐19 infections has been approximately 2.2% (1370/60363; 13. February 2020, 06:53 PM CET); it was 9.6% (774/8096) in the SARS‐CoV epidemic 11 and 34.4% (858/2494) in the MERS‐CoV outbreak since 2012 12. Like other viruses, SARS‐CoV‐2 infects lung alveolar epithelial cells using receptor‐mediated endocytosis via the angiotensin‐converting enzyme II (ACE2) as an entry receptor 4. Artificial intelligence predicts that drugs associated with AP2‐associated protein kinase 1 (AAK1) disrupting these proteins may inhibit viral entry into the target cells 13. Baricitinib, used in the treatment of rheumatoid arthritis, is an AAK1 and Janus kinase inhibitor and suggested for controlling viral replication 13. Moreover, one in vitro and a clinical study indicate that remdesivir, an adenosine analogue that acts as a viral protein inhibitor, has improved the condition in one patient 14, 15. Chloroquine, by increasing the endosomal pH required for virus‐cell fusion, has the potential of blocking viral infection 15 and was shown to affect activation of p38 mitogen‐activated protein kinase (MAPK), which is involved in replication of HCoV‐229E 16. A combination of the antiretroviral drugs lopinavir and ritonavir significantly improved the clinical condition of SARS‐CoV patients 17 and might be an option in COVID‐19 infections. Further possibilities include leronlimab, a humanised monoclonal antibody (CCR5 antagonist), and galidesivir, a nucleoside RNA polymerase inhibitor, both of which have shown survival benefits in several deadly virus infections and are being considered as potential treatment candidates 18. Repurposing these available drugs for immediate use in treatment in SARS‐CoV‐2 infections could improve the currently available clinical management. Clinical trials presently registered at ClinicalTrials.gov focus on the efficacy of remdesivir, immunoglobulins, arbidol hydrochloride combined with interferon atomisation, ASC09F+Oseltamivir, ritonavir plus oseltamivir, lopinavir plus ritonavir, mesenchymal stem cell treatment, darunavir plus cobicistat, hydroxychloroquine, methylprednisolone and washed microbiota transplantation 19. Given the fragile health systems in most sub‐Saharan African countries, new and re‐emerging disease outbreaks such as the current COVID‐19 epidemic can potentially paralyse health systems at the expense of primary healthcare requirements. The impact of the Ebola epidemic on the economy and healthcare structures is still felt five years later in those countries which were affected. Effective outbreak responses and preparedness during emergencies of such magnitude are challenging across African and other lower‐middle‐income countries. Such situations can partly only be mitigated by supporting existing regional and sub‐Saharan African health structures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COVID-19: towards controlling of a pandemic

              During the past 3 weeks, new major epidemic foci of coronavirus disease 2019 (COVID-19), some without traceable origin, have been identified and are rapidly expanding in Europe, North America, Asia, and the Middle East, with the first confirmed cases being identified in African and Latin American countries. By March 16, 2020, the number of cases of COVID-19 outside China had increased drastically and the number of affected countries, states, or territories reporting infections to WHO was 143. 1 On the basis of ”alarming levels of spread and severity, and by the alarming levels of inaction”, on March 11, 2020, the Director-General of WHO characterised the COVID-19 situation as a pandemic. 2 The WHO Strategic and Technical Advisory Group for Infectious Hazards (STAG-IH) regularly reviews and updates its risk assessment of COVID-19 to make recommendations to the WHO health emergencies programme. STAG-IH's most recent formal meeting on March 12, 2020, included an update of the global COVID-19 situation and an overview of the research priorities established by the WHO Research and Development Blueprint Scientific Advisory Group that met on March 2, 2020, in Geneva, Switzerland, to prioritise the recommendations of an earlier meeting on COVID-19 research held in early February, 2020. 3 In this Comment, we outline STAG-IH's understanding of control activities with the group's risk assessment and recommendations. To respond to COVID-19, many countries are using a combination of containment and mitigation activities with the intention of delaying major surges of patients and levelling the demand for hospital beds, while protecting the most vulnerable from infection, including elderly people and those with comorbidities. Activities to accomplish these goals vary and are based on national risk assessments that many times include estimated numbers of patients requiring hospitalisation and availability of hospital beds and ventilation support. Most national response strategies include varying levels of contact tracing and self-isolation or quarantine; promotion of public health measures, including handwashing, respiratory etiquette, and social distancing; preparation of health systems for a surge of severely ill patients who require isolation, oxygen, and mechanical ventilation; strengthening health facility infection prevention and control, with special attention to nursing home facilities; and postponement or cancellation of large-scale public gatherings. Some lower-income and middle-income countries require technical and financial support to successfully respond to COVID-19, and many African, Asian, and Latin American nations are rapidly developing the capacity for PCR testing for COVID-19. Based on more than 500 genetic sequences submitted to GISAID (the Global Initiative on Sharing All Influenza Data), the virus has not drifted to significant strain difference and changes in sequence are minimal. There is no evidence to link sequence information with transmissibility or virulence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 1 the virus that causes COVID-19. SARS-CoV-2, like other emerging high-threat pathogens, has infected health-care workers in China4, 5 and several other countries. To date, however, in China, where infection prevention and control was taken seriously, nosocomial transmission has not been a major amplifier of transmission in this epidemic. Epidemiological records in China suggest that up to 85% of human-to-human transmission has occurred in family clusters 4 and that 2055 health-care workers have become infected, with an absence of major nosocomial outbreaks and some supporting evidence that some health-care workers acquired infection in their families.4, 5 These findings suggest that close and unprotected exposure is required for transmission by direct contact or by contact with fomites in the immediate environment of those with infection. Continuing reports from outside China suggest the same means of transmission to close contacts and persons who attended the same social events or were in circumscribed areas such as office spaces or cruise ships.6, 7 Intensified case finding and contact tracing are considered crucial by most countries and are being undertaken to attempt to locate cases and to stop onward transmission. Confirmation of infection at present consists of PCR for acute infection, and although many serological tests to identify antibodies are being developed they require validation with well characterised sera before they are reliable for general use. From studies of viral shedding in patients with mild and more severe infections, shedding seems to be greatest during the early phase of disease (Myoung-don Oh and Gabriel Leung, WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China, personal communication).8, 9 The role, if any, of asymptomatic carriers in transmitting infection is not yet completely understood. 4 Presymptomatic infectiousness is a concern (Myoung-don Oh and Gabriel Leung, personal communication)8, 9 and many countries are now using 1–2 days of symptom onset as the start day for contact identification. A comprehensive report published by the Chinese Center for Disease Control and Prevention on the epidemiological characteristics of 72 314 patients with COVID-19 confirmed previous understanding that most known infections cause mild disease, with a case fatality ratio that ranged from 2·9% in Hubei province to 0·4% in the other Chinese provinces. 5 This report also suggested that elderly people, particularly those older than 80 years, and people with comorbidities, such as cardiac disease, respiratory disease, and diabetes, are at greatest risk of serious disease and death. The case definition used in China changed several times as COVID-19 progressed, making it difficult to completely characterise the natural history of infection, including the mortality ratio. 4 Information on mortality and contributing factors from outbreak sites in other countries varies greatly, and seems to be influenced by such factors as age of patients, associated comorbidities, availability of isolation facilities for acute care for patients who need respiratory support, and surge capacity of the health-care system. Individuals in care facilities for older people are at particular risk of serious disease as shown in the report of a series of deaths in an elderly care facility in the USA. 10 The pandemic of COVID-19 has clearly entered a new stage with rapid spread in countries outside China and all members of society must understand and practise measures for self-protection and for prevention of transmission of infection to others. STAG-IH makes the following recommendations. First, countries need to rapidly and robustly increase their preparedness, readiness, and response actions based on their national risk assessment and the four WHO transmission scenarios 11 for countries with no cases, first cases, first clusters, and community transmission and spread (4Cs). Second, all countries should consider a combination of response measures: case and contact finding; containment or other measures that aim to delay the onset of patient surges where feasible; and measures such as public awareness, promotion of personal protective hygiene, preparation of health systems for a surge of severely ill patients, stronger infection prevention and control in health facilities, nursing homes, and long-term care facilities, and postponement or cancellation of large-scale public gatherings. Third, countries with no or a few first cases of COVID-19 should consider active surveillance for timely case finding; isolate, test, and trace every contact in containment; practise social distancing; and ready their health-care systems and populations for spread of infection. Fourth, lower-income and middle-income countries that request support from WHO should be fully supported technically and financially. Financial support should be sought by countries and by WHO, including from the World Bank Pandemic Emergency Financing Facility and other mechanisms. 12 Finally, research gaps about COVID-19 should be addressed and are shown in the accompanying panel and include some identified by the global community and by the Research and Development Blueprint Scientific Advisory Group. Panel Research gaps that need to be addressed for the response to COVID-19 • Fill gaps in understanding of the natural history of infection to better define the period of infectiousness and transmissibility; more accurately estimate the reproductive number in various outbreak settings and improve understanding the role of asymptomatic infection. • Comparative analysis of different quarantine strategies and contexts for their effectiveness and social acceptability • Enhance and develop an ethical framework for outbreak response that includes better equity for access to interventions for all countries • Promote the development of point-of-care diagnostic tests • Determine the best ways to apply knowledge about infection prevention and control in health-care settings in resource-constrained countries (including identification of optimal personal protective equipment) and in the broader community, specifically to understand behaviour among different vulnerable groups • Support standardised, best evidence-based approach for clinical management and better outcomes and implement randomised, controlled trials for therapeutics and vaccines as promising agents emerge • Validation of existing serological tests, including those that have been developed by commercial entities, and establishment of biobanks and serum panels of well characterised COVID-19 sera to support such efforts • Complete work on animal models for vaccine and therapeutic research and development The STAG-IH emphasises the importance of the continued rapid sharing of data of public health importance in medical journals that provide rapid peer review and online publication without a paywall. It is sharing of information in this way, as well as technical collaboration among clinicians, epidemiologists, and virologists, that has provided the world with its current understanding of COVID-19.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                04 September 2020
                September 2020
                : 17
                : 18
                : 6439
                Affiliations
                [1 ]Department of Geography and Environmental Studies, St. Mary’s University, Halifax, NS B3H 3C3, Canada; khan.rahaman@ 123456smu.ca
                [2 ]United Nations, Planning Unit, Shelter and Site Division, Cox’s Bazar 4700, Bangladesh; sultan.mahmud@ 123456udo.edu
                [3 ]Chair of Environmental Development and Risk Management, Faculty of Environmental Sciences, Technische Universität Dresden (TUD), 01217 Dresden, Germany
                [4 ]Marie Curie Global Fellow at Institute of Behavioral Science, University of Colorado Boulder, Boulder, CO 80302, USA
                Author notes
                [* ]Correspondence: bishawjit.mallick@ 123456tu-dresden.de ; Tel.: +49-351-463-42590; Fax: +49-351-463-42516
                Author information
                https://orcid.org/0000-0002-8018-2355
                https://orcid.org/0000-0002-9492-1059
                Article
                ijerph-17-06439
                10.3390/ijerph17186439
                7557807
                32899619
                eabd6983-6ed4-4d6f-8501-a9e7c815d708
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 July 2020
                : 01 September 2020
                Categories
                Article

                Public health
                covid-19,environment,decentralisation,bangladesh,public health,policies,management
                Public health
                covid-19, environment, decentralisation, bangladesh, public health, policies, management

                Comments

                Comment on this article