24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stabilization of SIRT7 deacetylase by viral oncoprotein HBx leads to inhibition of growth restrictive RPS7 gene and facilitates cellular transformation

      research-article
      1 , a , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sirtuin-7 (SIRT7) deacetylase exhibits a high selectivity for acetylated H3K18 and has been implicated in the maintenance of malignant phenotype. However, it remains unclear if SIRT7 and H3K18ac play a role in the tumorigenic program driven by oncogenic viruses. We show that ectopically expressed HBx oncoprotein of hepatitis B virus promoted intracellular stability of SIRT7 by salvaging it from ubiquitin-mediated proteasomal degradation. HBx-dependent accumulation of SIRT7 favored H3K18 deacetylation and down-regulated the small ribosomal protein gene, RPS7, involved in cell death and DNA damage response. HBx facilitated the recruitment of SIRT7 to RPS7 promoter thus impeding H3K18ac occupancy and hindering RPS7 transcription. The antagonistic relationship between SIRT7 and RPS7 was also observed in the HBx transgenic mice, where elevated levels of SIRT7 protein were coincident with low levels of H3K18ac and RPS7. Strikingly, inhibition of cellular deubiquitinase activity restored RPS7 gene transcription. Further, depletion of endogenous SIRT7 led to decreased cell viability and transformation. The biological relevance of RPS7 suppression by HBx-SIRT7 axis was evident from ectopic expression of RPS7 which attenuated clonogenicity of cells. Thus, our findings suggest that SIRT7 is a critical regulator of HBx-driven oncogenic program, through its antagonistic impact on growth restrictive ribosomal protein RPS7.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes.

          Deubiquitinating enzymes (DUBs) are proteases that process ubiquitin or ubiquitin-like gene products, reverse the modification of proteins by a single ubiquitin(-like) protein, and remodel polyubiquitin(-like) chains on target proteins. The human genome encodes nearly 100 DUBs with specificity for ubiquitin in five gene families. Most DUB activity is cryptic, and conformational rearrangements often occur during the binding of ubiquitin and/or scaffold proteins. DUBs with specificity for ubiquitin contain insertions and extensions modulating DUB substrate specificity, protein-protein interactions, and cellular localization. Binding partners and multiprotein complexes with which DUBs associate modulate DUB activity and substrate specificity. Quantitative studies of activity and protein-protein interactions, together with genetic studies and the advent of RNAi, have led to new insights into the function of yeast and human DUBs. This review discusses ubiquitin-specific DUBs, some of the generalizations emerging from recent studies of the regulation of DUB activity, and their roles in various cellular processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b.

            Sirtuins are nicotinamide adenine dinucleotide oxidized form (NAD(+) )-dependent deacetylases and function in cellular metabolism, stress resistance, and aging. For sirtuin7 (SIRT7), a role in ribosomal gene transcription is proposed, but its function in cancer has been unclear. In this study we show that SIRT7 expression was up-regulated in a large cohort of human hepatocellular carcinoma (HCC) patients. SIRT7 knockdown influenced the cell cycle and caused a significant increase of liver cancer cells to remain in the G1 /S phase and to suppress growth. This treatment restored p21(WAF1/Cip1) , induced Beclin-1, and repressed cyclin D1. In addition, sustained suppression of SIRT7 reduced the in vivo tumor growth rate in a mouse xenograft model. To explore mechanisms in SIRT7 regulation, microRNA (miRNA) profiling was carried out. This identified five significantly down-regulated miRNAs in HCC. Bioinformatics analysis of target sites and ectopic expression in HCC cells showed that miR-125a-5p and miR-125b suppressed SIRT7 and cyclin D1 expression and induced p21(WAF1/Cip1) -dependent G1 cell cycle arrest. Furthermore, treatment of HCC cells with 5-aza-2'-deoxycytidine or ectopic expression of wildtype but not mutated p53 restored miR-125a-5p and miR-125b expression and inhibited tumor cell growth, suggesting their regulation by promoter methylation and p53 activity. To show the clinical significance of these findings, mutations in the DNA binding domain of p53 and promoter methylation of miR-125b were investigated. Four out of nine patients with induced SIRT7 carried mutations in the p53 gene and one patient showed hypermethylation of the miR-125b promoter region. Our findings suggest the oncogenic potential of SIRT7 in hepatocarcinogenesis. A regulatory loop is proposed whereby SIRT7 inhibits transcriptional activation of p21(WAF1/Cip1) by way of repression of miR-125a-5p and miR-125b. This makes SIRT7 a promising target in cancer therapy. (HEPATOLOGY 2013). Copyright © 2012 American Association for the Study of Liver Diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA.

              The hepatoblastoma cell line Hep G2 was transfected with a plasmid carrying the gene that confers resistance to G418 and four 5'-3' tandem copies of the hepatitis B virus (HBV) genome positioned such that two dimers of the genomic DNA are 3'-3' with respect to one another. Cells of one clone that grew in the presence of G418 produce high levels of hepatitis B e antigen and of hepatitis B surface antigen. HBV DNA is carried by these cells as chromosomally integrated sequences and episomally as relaxed circular, covalently closed, and incomplete copies of the HBV genome. Viral DNA was detected also in conditioned growth medium at the buoyant densities characteristic for infectious Dane and immature core particles. Finally, HBV-specific components morphologically identical to the 22-nm spherical and filamentous hepatitis B surface antigen particles as well as 42-nm Dane particles were visualized by immunoelectron microscopic analysis. Therefore, we have demonstrated that the Hep G2 cell line can support the assembly and secretion not only of several of the replicative intermediates of HBV DNA but also of Dane-like particles. This in vitro system can now be used to study the life cycle of HBV and the reaction of immunocompetent cells with cells carrying HBV.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                07 October 2015
                2015
                : 5
                : 14806
                Affiliations
                [1 ]Virology Group, International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg, New Delhi-110067, India
                Author notes
                Article
                srep14806
                10.1038/srep14806
                4595800
                26442981
                eab91a6a-91b1-432d-8007-5ffdd0cb3847
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 11 March 2015
                : 09 September 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article