19
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of covid-19 pandemic on life expectancy and premature mortality in 2020: time series analysis in 37 countries

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To estimate the changes in life expectancy and years of life lost in 2020 associated with the covid-19 pandemic.

          Design

          Time series analysis.

          Setting

          37 upper-middle and high income countries or regions with reliable and complete mortality data.

          Participants

          Annual all cause mortality data from the Human Mortality Database for 2005-20, harmonised and disaggregated by age and sex.

          Main outcome measures

          Reduction in life expectancy was estimated as the difference between observed and expected life expectancy in 2020 using the Lee-Carter model. Excess years of life lost were estimated as the difference between the observed and expected years of life lost in 2020 using the World Health Organization standard life table.

          Results

          Reduction in life expectancy in men and women was observed in all the countries studied except New Zealand, Taiwan, and Norway, where there was a gain in life expectancy in 2020. No evidence was found of a change in life expectancy in Denmark, Iceland, and South Korea. The highest reduction in life expectancy was observed in Russia (men: −2.33, 95% confidence interval −2.50 to −2.17; women: −2.14, −2.25 to −2.03), the United States (men: −2.27, −2.39 to −2.15; women: −1.61, −1.70 to −1.51), Bulgaria (men: −1.96, −2.11 to −1.81; women: −1.37, −1.74 to −1.01), Lithuania (men: −1.83, −2.07 to −1.59; women: −1.21, −1.36 to −1.05), Chile (men: −1.64, −1.97 to −1.32; women: −0.88, −1.28 to −0.50), and Spain (men: −1.35, −1.53 to −1.18; women: −1.13, −1.37 to −0.90). Years of life lost in 2020 were higher than expected in all countries except Taiwan, New Zealand, Norway, Iceland, Denmark, and South Korea. In the remaining 31 countries, more than 222 million years of life were lost in 2020, which is 28.1 million (95% confidence interval 26.8m to 29.5m) years of life lost more than expected (17.3 million (16.8m to 17.8m) in men and 10.8 million (10.4m to 11.3m) in women). The highest excess years of life lost per 100 000 population were observed in Bulgaria (men: 7260, 95% confidence interval 6820 to 7710; women: 3730, 2740 to 4730), Russia (men: 7020, 6550 to 7480; women: 4760, 4530 to 4990), Lithuania (men: 5430, 4750 to 6070; women: 2640, 2310 to 2980), the US (men: 4350, 4170 to 4530; women: 2430, 2320 to 2550), Poland (men: 3830, 3540 to 4120; women: 1830, 1630 to 2040), and Hungary (men: 2770, 2490 to 3040; women: 1920, 1590 to 2240). The excess years of life lost were relatively low in people younger than 65 years, except in Russia, Bulgaria, Lithuania, and the US where the excess years of life lost was >2000 per 100 000.

          Conclusion

          More than 28 million excess years of life were lost in 2020 in 31 countries, with a higher rate in men than women. Excess years of life lost associated with the covid-19 pandemic in 2020 were more than five times higher than those associated with the seasonal influenza epidemic in 2015.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: found

          Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science

          Summary The coronavirus disease 2019 (COVID-19) pandemic is having a profound effect on all aspects of society, including mental health and physical health. We explore the psychological, social, and neuroscientific effects of COVID-19 and set out the immediate priorities and longer-term strategies for mental health science research. These priorities were informed by surveys of the public and an expert panel convened by the UK Academy of Medical Sciences and the mental health research charity, MQ: Transforming Mental Health, in the first weeks of the pandemic in the UK in March, 2020. We urge UK research funding agencies to work with researchers, people with lived experience, and others to establish a high level coordination group to ensure that these research priorities are addressed, and to allow new ones to be identified over time. The need to maintain high-quality research standards is imperative. International collaboration and a global perspective will be beneficial. An immediate priority is collecting high-quality data on the mental health effects of the COVID-19 pandemic across the whole population and vulnerable groups, and on brain function, cognition, and mental health of patients with COVID-19. There is an urgent need for research to address how mental health consequences for vulnerable groups can be mitigated under pandemic conditions, and on the impact of repeated media consumption and health messaging around COVID-19. Discovery, evaluation, and refinement of mechanistically driven interventions to address the psychological, social, and neuroscientific aspects of the pandemic are required. Rising to this challenge will require integration across disciplines and sectors, and should be done together with people with lived experience. New funding will be required to meet these priorities, and it can be efficiently leveraged by the UK's world-leading infrastructure. This Position Paper provides a strategy that may be both adapted for, and integrated with, research efforts in other countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis

            Summary Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 and is spread person-to-person through close contact. We aimed to investigate the effects of physical distance, face masks, and eye protection on virus transmission in health-care and non-health-care (eg, community) settings. Methods We did a systematic review and meta-analysis to investigate the optimum distance for avoiding person-to-person virus transmission and to assess the use of face masks and eye protection to prevent transmission of viruses. We obtained data for SARS-CoV-2 and the betacoronaviruses that cause severe acute respiratory syndrome, and Middle East respiratory syndrome from 21 standard WHO-specific and COVID-19-specific sources. We searched these data sources from database inception to May 3, 2020, with no restriction by language, for comparative studies and for contextual factors of acceptability, feasibility, resource use, and equity. We screened records, extracted data, and assessed risk of bias in duplicate. We did frequentist and Bayesian meta-analyses and random-effects meta-regressions. We rated the certainty of evidence according to Cochrane methods and the GRADE approach. This study is registered with PROSPERO, CRD42020177047. Findings Our search identified 172 observational studies across 16 countries and six continents, with no randomised controlled trials and 44 relevant comparative studies in health-care and non-health-care settings (n=25 697 patients). Transmission of viruses was lower with physical distancing of 1 m or more, compared with a distance of less than 1 m (n=10 736, pooled adjusted odds ratio [aOR] 0·18, 95% CI 0·09 to 0·38; risk difference [RD] −10·2%, 95% CI −11·5 to −7·5; moderate certainty); protection was increased as distance was lengthened (change in relative risk [RR] 2·02 per m; p interaction=0·041; moderate certainty). Face mask use could result in a large reduction in risk of infection (n=2647; aOR 0·15, 95% CI 0·07 to 0·34, RD −14·3%, −15·9 to −10·7; low certainty), with stronger associations with N95 or similar respirators compared with disposable surgical masks or similar (eg, reusable 12–16-layer cotton masks; p interaction=0·090; posterior probability >95%, low certainty). Eye protection also was associated with less infection (n=3713; aOR 0·22, 95% CI 0·12 to 0·39, RD −10·6%, 95% CI −12·5 to −7·7; low certainty). Unadjusted studies and subgroup and sensitivity analyses showed similar findings. Interpretation The findings of this systematic review and meta-analysis support physical distancing of 1 m or more and provide quantitative estimates for models and contact tracing to inform policy. Optimum use of face masks, respirators, and eye protection in public and health-care settings should be informed by these findings and contextual factors. Robust randomised trials are needed to better inform the evidence for these interventions, but this systematic appraisal of currently best available evidence might inform interim guidance. Funding World Health Organization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COVID-19 and Italy: what next?

              Summary The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already taken on pandemic proportions, affecting over 100 countries in a matter of weeks. A global response to prepare health systems worldwide is imperative. Although containment measures in China have reduced new cases by more than 90%, this reduction is not the case elsewhere, and Italy has been particularly affected. There is now grave concern regarding the Italian national health system's capacity to effectively respond to the needs of patients who are infected and require intensive care for SARS-CoV-2 pneumonia. The percentage of patients in intensive care reported daily in Italy between March 1 and March 11, 2020, has consistently been between 9% and 11% of patients who are actively infected. The number of patients infected since Feb 21 in Italy closely follows an exponential trend. If this trend continues for 1 more week, there will be 30 000 infected patients. Intensive care units will then be at maximum capacity; up to 4000 hospital beds will be needed by mid-April, 2020. Our analysis might help political leaders and health authorities to allocate enough resources, including personnel, beds, and intensive care facilities, to manage the situation in the next few days and weeks. If the Italian outbreak follows a similar trend as in Hubei province, China, the number of newly infected patients could start to decrease within 3–4 days, departing from the exponential trend. However, this cannot currently be predicted because of differences between social distancing measures and the capacity to quickly build dedicated facilities in China.
                Bookmark

                Author and article information

                Contributors
                Role: research fellow
                Role: head of laboratory of demographic data
                Role: research scientist
                Role: professor of primary care diabetes and vascular medicine
                Role: professor of social epidemiology
                Role: professor of population health research
                Role: professor of epidemiology and medical statistics
                Role: associate professor
                Journal
                BMJ
                BMJ
                BMJ-UK
                bmj
                The BMJ
                BMJ Publishing Group Ltd.
                0959-8138
                1756-1833
                2021
                03 November 2021
                03 November 2021
                : 375
                : e066768
                Affiliations
                [1 ]Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford, UK
                [2 ]Max Planck Institute for Demographic Research, Rostock, Germany
                [3 ]International Laboratory for Population and Health, National Research University Higher School of Economics, Moscow, Russian Federation
                [4 ]Diabetes Research Centre, University of Leicester, Leicester, UK
                [5 ]NIHR Applied Research Collaboration–East Midlands, Leicester General Hospital, Leicester, UK
                [6 ]Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
                [7 ]MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
                [8 ]MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
                Author notes
                Correspondence to: N Islam nazrul.islam@ 123456ndph.ox.ac.uk
                Author information
                https://orcid.org/0000-0003-3982-4325
                Article
                BMJ-2021-066768.R1 isln066768
                10.1136/bmj-2021-066768
                8564739
                34732390
                e5f658b5-77a7-4ef6-bc5d-4baa5214a298
                © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/.

                History
                : 06 October 2021
                Categories
                Research
                2474

                Medicine
                Medicine

                Comments

                Comment on this article