13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Healthcare-associated hepatitis B and C transmission to patients in the EU/EEA and UK: a systematic review of reported outbreaks between 2006 and 2021

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Healthcare-associated transmission was the second most common hepatitis B (HBV) and hepatitis C (HCV) transmission route according to 2006–2012 European surveillance data, but data quality and completeness issues hinder comprehensive characterisation of this important issue. We carried out a systematic review of published literature on healthcare-associated transmission of HBV or HCV in European Union (EU) and European Economic Area (EEA) countries and the United Kingdom to complement surveillance data and identify higher-risk settings. We searched the PubMed and Embase databases and grey literature over the period January 2006 to September 2021, for publications reporting transmission events after 2000 in the EU/EEA and UK related to a healthcare setting or procedure. We collected data on the country, number of patients, setting type and route of transmission. In 65 publications from 16 countries, 43 HBV and 48 HCV events were identified resulting in 442 newly infected patients. Most events were reported from Italy (7 HBV and 12 HCV), Germany (8 HBV and 5 HCV) and the United Kingdom (8 HBV and 5 HCV). The number of patients infected from a single source within an event ranged from 1 to 53. Five large outbreaks of over 20 cases were identified, including two in Poland and one each in Belgium, Hungary and Slovakia. The majority of transmission events occurred through blood transfusions or in dialysis units. However, there were a number of outbreaks in seemingly low risk settings such as CT/MRI scanning units. A failure to adequately follow infection prevention control (IPC) precautions was reported in 30% of included studies. Healthcare-associated transmission of hepatitis B and C continues to occur in a range of community and hospital settings across EU/EEA countries and often results in large outbreaks, although the true extent of the situation cannot be fully determined due to under-reporting. Strict IPC precautions should be implemented across all healthcare settings and regularly audited, and surveillance systems strengthened and standardised to allow for comprehensive and consistent reporting of nosocomial transmission of hepatitis across the EU.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12889-022-14726-0.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection.

          Hepatitis B virus (HBV) infection remains a global public health problem with changing epidemiology due to several factors including vaccination policies and migration. This Clinical Practice Guideline presents updated recommendations for the optimal management of HBV infection. Chronic HBV infection can be classified into five phases: (I) HBeAg-positive chronic infection, (II) HBeAg-positive chronic hepatitis, (III) HBeAg-negative chronic infection, (IV) HBeAg-negative chronic hepatitis and (V) HBsAg-negative phase. All patients with chronic HBV infection are at increased risk of progression to cirrhosis and hepatocellular carcinoma (HCC), depending on host and viral factors. The main goal of therapy is to improve survival and quality of life by preventing disease progression, and consequently HCC development. The induction of long-term suppression of HBV replication represents the main endpoint of current treatment strategies, while HBsAg loss is an optimal endpoint. The typical indication for treatment requires HBV DNA >2,000IU/ml, elevated ALT and/or at least moderate histological lesions, while all cirrhotic patients with detectable HBV DNA should be treated. Additional indications include the prevention of mother to child transmission in pregnant women with high viremia and prevention of HBV reactivation in patients requiring immunosuppression or chemotherapy. The long-term administration of a potent nucleos(t)ide analogue with high barrier to resistance, i.e., entecavir, tenofovir disoproxil or tenofovir alafenamide, represents the treatment of choice. Pegylated interferon-alfa treatment can also be considered in mild to moderate chronic hepatitis B patients. Combination therapies are not generally recommended. All treated and untreated patients should be monitored for treatment response and adherence, and the risk of progression and development of complications. HCC remains the major concern for treated chronic hepatitis B patients. Several subgroups of patients with HBV infection require specific focus. Future treatment strategies to achieve 'cure' of disease and new biomarkers are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The PRISMA 2020 statement: An updated guideline for reporting systematic reviews

            Matthew Page and co-authors describe PRISMA 2020, an updated reporting guideline for systematic reviews and meta-analyses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Whole-genome sequencing in outbreak analysis.

              In addition to the ever-present concern of medical professionals about epidemics of infectious diseases, the relative ease of access and low cost of obtaining, producing, and disseminating pathogenic organisms or biological toxins mean that bioterrorism activity should also be considered when facing a disease outbreak. Utilization of whole-genome sequencing (WGS) in outbreak analysis facilitates the rapid and accurate identification of virulence factors of the pathogen and can be used to identify the path of disease transmission within a population and provide information on the probable source. Molecular tools such as WGS are being refined and advanced at a rapid pace to provide robust and higher-resolution methods for identifying, comparing, and classifying pathogenic organisms. If these methods of pathogen characterization are properly applied, they will enable an improved public health response whether a disease outbreak was initiated by natural events or by accidental or deliberate human activity. The current application of next-generation sequencing (NGS) technology to microbial WGS and microbial forensics is reviewed.
                Bookmark

                Author and article information

                Contributors
                jasleen.singh@nhs.net
                Journal
                BMC Public Health
                BMC Public Health
                BMC Public Health
                BioMed Central (London )
                1471-2458
                3 December 2022
                3 December 2022
                2022
                : 22
                : 2260
                Affiliations
                [1 ]GRID grid.418914.1, ISNI 0000 0004 1791 8889, European Centre for Disease Prevention and Control, ; Stockholm, Sweden
                [2 ]GRID grid.418914.1, ISNI 0000 0004 1791 8889, European Programme for Intervention Epidemiology Training, European Centre for Disease Prevention and Control, ; Stockholm, Sweden
                [3 ]GRID grid.415789.6, ISNI 0000 0001 1172 7414, National Institute of Public Health NIH, National Research Institute, ; Warsaw, Poland
                Article
                14726
                10.1186/s12889-022-14726-0
                9719626
                36463162
                ded3a512-f3e8-445d-8f00-5861760eea19
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 2 April 2022
                : 26 September 2022
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Public health
                hepatitis b,hepatitis c,healthcare-associated,transmission route
                Public health
                hepatitis b, hepatitis c, healthcare-associated, transmission route

                Comments

                Comment on this article