68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Antibacterial biocides and metals can co-select for antibiotic resistance when bacteria harbour resistance or tolerance genes towards both types of compounds. Despite numerous case studies, systematic and quantitative data on co-occurrence of such genes on plasmids and chromosomes is lacking, as is knowledge on environments and bacterial taxa that tend to carry resistance genes to such compounds. This effectively prevents identification of risk scenarios. Therefore, we aimed to identify general patterns for which biocide/metal resistance genes (BMRGs) and antibiotic resistance genes (ARGs) that tend to occur together. We also aimed to quantify co-occurrence of resistance genes in different environments and taxa, and investigate to what extent plasmids carrying both types of genes are conjugative and/or are carrying toxin-antitoxin systems.

          Results

          Co-occurrence patterns of resistance genes were derived from publicly available, fully sequenced bacterial genomes ( n = 2522) and plasmids ( n = 4582). The only BMRGs commonly co-occurring with ARGs on plasmids were mercury resistance genes and the qacE∆1 gene that provides low-level resistance to quaternary ammonium compounds. Novel connections between cadmium/zinc and macrolide/aminoglycoside resistance genes were also uncovered. Several clinically important bacterial taxa were particularly prone to carry both BMRGs and ARGs. Bacteria carrying BMRGs more often carried ARGs compared to bacteria without ( p < 0.0001). BMRGs were found in 86 % of bacterial genomes, and co-occurred with ARGs in 17 % of the cases. In contrast, co-occurrences of BMRGs and ARGs were rare on plasmids from all external environments (<0.7 %) but more common on those of human and domestic animal origin (5 % and 7 %, respectively). Finally, plasmids with both BMRGs and ARGs were more likely to be conjugative ( p < 0.0001) and carry toxin-antitoxin systems ( p < 0.0001) than plasmids without resistance genes.

          Conclusions

          This is the first large-scale identification of compounds, taxa and environments of particular concern for co-selection of resistance against antibiotics, biocides and metals. Genetic co-occurrences suggest that plasmids provide limited opportunities for biocides and metals to promote horizontal transfer of antibiotic resistance through co-selection, whereas ample possibilities exist for indirect selection via chromosomal BMRGs. Taken together, the derived patterns improve our understanding of co-selection potential between biocides, metals and antibiotics, and thereby provide guidance for risk-reducing actions.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12864-015-2153-5) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The KEGG database.

          KEGG (http://www.genome.ad.jp/kegg/) is a suite of databases and associated software for understanding and simulating higher-order functional behaviours of the cell or the organism from its genome information. First, KEGG computerizes data and knowledge on protein interaction networks (PATHWAY database) and chemical reactions (LIGAND database) that are responsible for various cellular processes. Second, KEGG attempts to reconstruct protein interaction networks for all organisms whose genomes are completely sequenced (GENES and SSDB databases). Third, KEGG can be utilized as reference knowledge for functional genomics (EXPRESSION database) and proteomics (BRITE database) experiments. I will review the current status of KEGG and report on new developments in graph representation and graph computations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deletional bias and the evolution of bacterial genomes.

            Although bacteria increase their DNA content through horizontal transfer and gene duplication, their genomes remain small and, in particular, lack nonfunctional sequences. This pattern is most readily explained by a pervasive bias towards higher numbers of deletions than insertions. When selection is not strong enough to maintain them, genes are lost in large deletions or inactivated and subsequently eroded. Gene inactivation and loss are particularly apparent in obligate parasites and symbionts, in which dramatic reductions in genome size can result not from selection to lose DNA, but from decreased selection to maintain gene functionality. Here we discuss the evidence showing that deletional bias is a major force that shapes bacterial genomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacterial heavy metal resistance: new surprises.

              Bacterial plasmids encode resistance systems for toxic metal ions including Ag+, AsO2-, AsO4(3-), Cd2+, CO2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, Sb3+, TeO3(2-), Tl+, and Zn2+. In addition to understanding of the molecular genetics and environmental roles of these resistances, studies during the last few years have provided surprises and new biochemical mechanisms. Chromosomal determinants of toxic metal resistances are known, and the distinction between plasmid resistances and those from chromosomal genes has blurred, because for some metals (notably mercury and arsenic), the plasmid and chromosomal determinants are basically the same. Other systems, such as copper transport ATPases and metallothionein cation-binding proteins, are only known from chromosomal genes. The largest group of metal resistance systems function by energy-dependent efflux of toxic ions. Some of the efflux systems are ATPases and others are chemiosmotic cation/proton antiporters. The CadA cadmium resistance ATPase of gram-positive bacteria and the CopB copper efflux system of Enterococcus hirae are homologous to P-type ATPases of animals and plants. The CadA ATPase protein has been labeled with 32P from gamma-32P-ATP and drives ATP-dependent Cd2+ uptake by inside-out membrane vesicles. Recently isolated genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are more similar to the bacterial CadA and CopB ATPases than to eukaryote ATPases that pump different cations. The arsenic resistance efflux system transports arsenite, using alternatively either a two-component (ArsA and ArsB) ATPase or a single polypeptide (ArsB) functioning as a chemiosmotic transporter. The third gene in the arsenic resistance system, arsC, encodes an enzyme that converts intracellular arsenate [As (V)] to arsenite [As (III)], the substrate of the efflux system. The three-component Czc (Cd2+, Zn2+, and CO2+) chemiosmotic efflux pump of soil microbes consists of inner membrane (CzcA), outer membrane (CzcC), and membrane-spanning (CzcB) proteins that together transport cations from the cytoplasm across the periplasmic space to the outside of the cell. Finally, the first bacterial metallothionein (which by definition is a small protein that binds metal cations by means of numerous cysteine thiolates) has been characterized in cyanobacteria.
                Bookmark

                Author and article information

                Contributors
                +46-31-3424625 , joakim.larsson@fysiologi.gu.se
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                17 November 2015
                17 November 2015
                2015
                : 16
                : 964
                Affiliations
                [ ]Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
                [ ]Department of Mathematical Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
                Article
                2153
                10.1186/s12864-015-2153-5
                4650350
                26576951
                deb5deda-76a6-43ef-a5b4-deaec8a5d205
                © Pal et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 16 September 2015
                : 27 October 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Genetics
                antibiotic resistance,biocide resistance,metal resistance,bacterial genomes,plasmids,co-selection,toxin-antitoxin

                Comments

                Comment on this article