8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combined Parietal-Insular-Striatal Cortex Stroke with New-Onset Hallucinations: Supporting the Salience Network Model of Schizophrenia

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brain imaging studies have identified multiple neuronal networks and circuits in the brain with altered functioning in patients with schizophrenia. These include the hippocampo-cerebello-cortical circuit, the prefrontal-thalamic-cerebellar circuit, functional integration in the bilateral caudate nucleus, and the salience network consisting of the insular cortex, parietal anterior cingulate cortex, and striatum, as well as limbic structures. Attributing psychotic symptoms to any of these networks in schizophrenia is confounded by the disruption of these networks in schizophrenic patients. Such attribution can be done with isolated dysfunction in any of these networks with concurrent psychotic symptoms. We present the case of a patient who presents with new-onset hallucinations and a stroke in brain regions similar to the salience network (insular cortex, parietal cortex, and striatum). The implication of these findings in isolating psychotic symptoms of the salience network is discussed.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Auditory verbal hallucinations predominantly activate the right inferior frontal area.

          The pathophysiology of auditory verbal hallucinations (AVH) is largely unknown. Several functional imaging studies have measured cerebral activation during these hallucinations, but sample sizes were relatively small (one to eight subjects) and findings inconsistent. In this study cerebral activation was measured using fMRI in 24 psychotic patients while they experienced AVH in the scanner and, in another session, while they silently generated words. All patients were right handed and diagnosed with schizophrenia, schizo-affective disorder or psychotic disorder not otherwise specified. Group analysis for AVH revealed activation in the right homologue of Broca's area, bilateral insula, bilateral supramarginal gyri and right superior temporal gyrus. Broca's area and left superior temporal gyrus were not activated. Group analysis for word generation in these patients yielded activation in Broca's and Wernicke's areas and to a lesser degree their right-sided homologues, bilateral insula and anterior cingulate gyri. Lateralization of activity during AVH was not correlated with language lateralization, but rather with the degree to which the content of the hallucinations had a negative emotional valence. The main difference between cerebral activity during AVH and activity during normal inner speech appears to be the lateralization. The predominant engagement of the right inferior frontal area during AVH may be related to the typical low semantic complexity and negative emotional content.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular imaging of the dopaminergic system and its association with human cognitive function.

            Molecular imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) has recently been used to examine dopamine (DA) function and its relationship with cognition in human subjects. This article will review PET and SPECT studies that have explored the relationship between cognitive processes and components of the DA system (pre-, intra-, and postsynaptic) in healthy and patient populations such as Parkinson's disease (PD), schizophrenia, Huntington's disease, and aging. It is demonstrated that DA activity modulates a range of frontal executive-type cognitive processes such as working memory, attentional functioning, and sequential organization, and alterations of DA within the fronto-striato-thalamic circuits might contribute to the cognitive impairments observed in PD, schizophrenia, and normal aging. Although associations between DA and cognitive measures need to be considered within the context of fronto-striato-thalamic circuitry, it is suggested that striatal (especially caudate) DA activity, particularly via D2 receptors, might be important for response inhibition, temporal organization of material, and motor performance, whereas cortical DA transmission via D1 receptors might be important for maintaining and representing on-going behavior.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A computational morphometric MRI study of schizophrenia: effects of hallucinations.

              Quantitative magnetic resonance imaging (MRI) studies in patients with schizophrenia have shown reliable deficits in global tissue volume as well as some regionally specific changes, particularly in the temporal and frontal lobes. Recent technical advances have enabled automated voxel-wise analyses, which have the advantage of facilitating whole brain coverage without the restrictions of anatomically defined regions of interest and imperfect rater reliability. We used such a method to estimate voxel composition from segmentation of bivariate, dual-echo spin-echo data in 72 men with schizophrenia. Of these, 41 had a prominent history of auditory-verbal hallucinations and 31 had no such history. The patients were compared with 32 age, gender, handedness and IQ matched healthy controls. The study revealed localized areas of reduced grey-matter tissue proportion aggregating around the medial temporal lobes, the insulae, orbito-frontal cortex including anterior cingulate, and the precuneus (and lingual) gyri, in the schizophrenia patients as a whole. There were also reductions in white-matter tissue proportion extending along much of the large anterior-posterior frontal tracts in the right hemisphere. Small regions of increased grey matter were also noted in the right inferior parietal lobe. A contrast between the hallucinator and non-hallucinator patient groups showed a single region of reduced grey-matter tissue proportion affecting the left insula and adjacent temporal lobe. These data confirm the utility of voxel-based morphometric methods in schizophrenia research and point towards disruption to a 'paralimbic' neural network, as underlying schizophrenic psychopathology in general, with abnormalities of the left insula specifically related to hallucinations.
                Bookmark

                Author and article information

                Contributors
                Journal
                Psychiatry J
                Psychiatry J
                PSYCHIATRY
                Psychiatry Journal
                Hindawi
                2314-4327
                2314-4335
                2020
                22 January 2020
                : 2020
                : 4262050
                Affiliations
                1American University of Antigua College of Medicine, Department of Psychiatry, Interfaith Medical Center, Brooklyn, New York, USA
                2Department of Psychiatry, Interfaith Medical Center, Brooklyn, New York, USA
                3Medical University of the Americas, Department of Psychiatry, Interfaith Medical Center, Brooklyn, New York, USA
                4Medical University of Lublin, Department of Psychiatry, Interfaith Medical Center, Brooklyn, New York, USA
                Author notes

                Academic Editor: Umberto Albert

                Author information
                https://orcid.org/0000-0002-7377-8804
                https://orcid.org/0000-0001-8563-7630
                https://orcid.org/0000-0001-5877-7080
                https://orcid.org/0000-0002-8408-6635
                Article
                10.1155/2020/4262050
                7001672
                32047802
                da707b2c-b2c0-4593-876e-cd3574327974
                Copyright © 2020 Saheba Nanda et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 August 2019
                : 10 January 2020
                : 11 January 2020
                Categories
                Review Article

                Comments

                Comment on this article