18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advances in Hybrid Brain-Computer Interfaces: Principles, Design, and Applications

      review-article
      , ,
      Computational Intelligence and Neuroscience
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Conventional brain-computer interface (BCI) systems have been facing two fundamental challenges: the lack of high detection performance and the control command problem. To this end, the researchers have proposed a hybrid brain-computer interface (hBCI) to address these challenges. This paper mainly discusses the research progress of hBCI and reviews three types of hBCI, namely, hBCI based on multiple brain models, multisensory hBCI, and hBCI based on multimodal signals. By analyzing the general principles, paradigm designs, experimental results, advantages, and applications of the latest hBCI system, we found that using hBCI technology can improve the detection performance of BCI and achieve multidegree/multifunctional control, which is significantly superior to single-mode BCIs.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials

          This paper describes the development and testing of a system whereby one can communicate through a computer by using the P300 component of the event-related brain potential (ERP). Such a system may be used as a communication aid by individuals who cannot use any motor system for communication (e.g., 'locked-in' patients). The 26 letters of the alphabet, together with several other symbols and commands, are displayed on a computer screen which serves as the keyboard or prosthetic device. The subject focuses attention successively on the characters he wishes to communicate. The computer detects the chosen character on-line and in real time. This detection is achieved by repeatedly flashing rows and columns of the matrix. When the elements containing the chosen character are flashed, a P300 is elicited, and it is this P300 that is detected by the computer. We report an analysis of the operating characteristics of the system when used with normal volunteers, who took part in 2 experimental sessions. In the first session (the pilot study/training session) subjects attempted to spell a word and convey it to a voice synthesizer for production. In the second session (the analysis of the operating characteristics of the system) subjects were required simply to attend to individual letters of a word for a specific number of trials while data were recorded for off-line analysis. The analyses suggest that this communication channel can be operated accurately at the rate of 0.20 bits/sec. In other words, under the conditions we used, subjects can communicate 12.0 bits, or 2.3 characters, per min.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enhanced performance by a hybrid NIRS-EEG brain computer interface.

            Noninvasive Brain Computer Interfaces (BCI) have been promoted to be used for neuroprosthetics. However, reports on applications with electroencephalography (EEG) show a demand for a better accuracy and stability. Here we investigate whether near-infrared spectroscopy (NIRS) can be used to enhance the EEG approach. In our study both methods were applied simultaneously in a real-time Sensory Motor Rhythm (SMR)-based BCI paradigm, involving executed movements as well as motor imagery. We tested how the classification of NIRS data can complement ongoing real-time EEG classification. Our results show that simultaneous measurements of NIRS and EEG can significantly improve the classification accuracy of motor imagery in over 90% of considered subjects and increases performance by 5% on average (p<0:01). However, the long time delay of the hemodynamic response may hinder an overall increase of bit-rates. Furthermore we find that EEG and NIRS complement each other in terms of information content and are thus a viable multimodal imaging technique, suitable for BCI. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Hybrid BCI

              Nowadays, everybody knows what a hybrid car is. A hybrid car normally has two engines to enhance energy efficiency and reduce CO2 output. Similarly, a hybrid brain-computer interface (BCI) is composed of two BCIs, or at least one BCI and another system. A hybrid BCI, like any BCI, must fulfill the following four criteria: (i) the device must rely on signals recorded directly from the brain; (ii) there must be at least one recordable brain signal that the user can intentionally modulate to effect goal-directed behaviour; (iii) real time processing; and (iv) the user must obtain feedback. This paper introduces hybrid BCIs that have already been published or are in development. We also introduce concepts for future work. We describe BCIs that classify two EEG patterns: one is the event-related (de)synchronisation (ERD, ERS) of sensorimotor rhythms, and the other is the steady-state visual evoked potential (SSVEP). Hybrid BCIs can either process their inputs simultaneously, or operate two systems sequentially, where the first system can act as a “brain switch”. For example, we describe a hybrid BCI that simultaneously combines ERD and SSVEP BCIs. We also describe a sequential hybrid BCI, in which subjects could use a brain switch to control an SSVEP-based hand orthosis. Subjects who used this hybrid BCI exhibited about half the false positives encountered while using the SSVEP BCI alone. A brain switch can also rely on hemodynamic changes measured through near-infrared spectroscopy (NIRS). Hybrid BCIs can also use one brain signal and a different type of input. This additional input can be an electrophysiological signal such as the heart rate, or a signal from an external device such as an eye tracking system.
                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Intell Neurosci
                Comput Intell Neurosci
                CIN
                Computational Intelligence and Neuroscience
                Hindawi
                1687-5265
                1687-5273
                2019
                8 October 2019
                : 2019
                : 3807670
                Affiliations
                South China Normal University, Guangzhou 510631, China
                Author notes

                Guest Editor: Hyun J. Baek

                Author information
                https://orcid.org/0000-0002-7576-6743
                Article
                10.1155/2019/3807670
                6800963
                31687006
                d5979411-659a-4089-8737-29b6a5b50fda
                Copyright © 2019 Zina Li et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 June 2019
                : 9 September 2019
                : 17 September 2019
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 61876067
                Funded by: Pearl River S and T Nova Program of Guangzhou
                Award ID: 201710010038
                Funded by: Natural Science Foundation of Guangdong Province
                Award ID: 2014A030310244
                Categories
                Review Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article

                scite_
                32
                0
                20
                0
                Smart Citations
                32
                0
                20
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content137

                Cited by9

                Most referenced authors464