4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The complete mitochondrial genome of Aconitum kusnezoffii Rchb. (Ranales, Ranunculaceae)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aconitum kusnezoffii Rchb. is a medicinal plant in the Ranunculaceae family. In this study, we report the first complete mitochondrial genome of A. kusnezoffii. The total length of the mitochondrial genome of A. kusnezoffii is 440,720 bp and the GC content of 46.85%. The mitochondrial genome contained 37 protein-coding genes, 29 tRNAs, and three rRNAs. These data will provide the basis for the systematic evolutionary analysis of Ranunculaceae.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.

          The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation

            Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. However, given the relatively high error rates of such technologies, efficient and accurate assembly of large repeats and closely related haplotypes remains challenging. We address these issues with Canu, a successor of Celera Assembler that is specifically designed for noisy single-molecule sequences. Canu introduces support for nanopore sequencing, halves depth-of-coverage requirements, and improves assembly continuity while simultaneously reducing runtime by an order of magnitude on large genomes versus Celera Assembler 8.2. These advances result from new overlapping and assembly algorithms, including an adaptive overlapping strategy based on tf-idf weighted MinHash and a sparse assembly graph construction that avoids collapsing diverged repeats and haplotypes. We demonstrate that Canu can reliably assemble complete microbial genomes and near-complete eukaryotic chromosomes using either Pacific Biosciences (PacBio) or Oxford Nanopore technologies and achieves a contig NG50 of >21 Mbp on both human and Drosophila melanogaster PacBio data sets. For assembly structures that cannot be linearly represented, Canu provides graph-based assembly outputs in graphical fragment assembly (GFA) format for analysis or integration with complementary phasing and scaffolding techniques. The combination of such highly resolved assembly graphs with long-range scaffolding information promises the complete and automated assembly of complex genomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MUMmer4: A fast and versatile genome alignment system

              The MUMmer system and the genome sequence aligner nucmer included within it are among the most widely used alignment packages in genomics. Since the last major release of MUMmer version 3 in 2004, it has been applied to many types of problems including aligning whole genome sequences, aligning reads to a reference genome, and comparing different assemblies of the same genome. Despite its broad utility, MUMmer3 has limitations that can make it difficult to use for large genomes and for the very large sequence data sets that are common today. In this paper we describe MUMmer4, a substantially improved version of MUMmer that addresses genome size constraints by changing the 32-bit suffix tree data structure at the core of MUMmer to a 48-bit suffix array, and that offers improved speed through parallel processing of input query sequences. With a theoretical limit on the input size of 141Tbp, MUMmer4 can now work with input sequences of any biologically realistic length. We show that as a result of these enhancements, the nucmer program in MUMmer4 is easily able to handle alignments of large genomes; we illustrate this with an alignment of the human and chimpanzee genomes, which allows us to compute that the two species are 98% identical across 96% of their length. With the enhancements described here, MUMmer4 can also be used to efficiently align reads to reference genomes, although it is less sensitive and accurate than the dedicated read aligners. The nucmer aligner in MUMmer4 can now be called from scripting languages such as Perl, Python and Ruby. These improvements make MUMer4 one the most versatile genome alignment packages available.
                Bookmark

                Author and article information

                Journal
                Mitochondrial DNA B Resour
                Mitochondrial DNA B Resour
                Mitochondrial DNA. Part B, Resources
                Taylor & Francis
                2380-2359
                11 March 2021
                2021
                : 6
                : 3
                : 779-781
                Affiliations
                [a ]School of Pharmacy, Liaoning University of Traditional Chinese Medicine , Dalian, China
                [b ]School of Mongol Medicine, Inner Mongolia University for Nationalities , Tongliao, China
                Author notes
                [*]

                Both authors contributed equally to this work.

                CONTACT Liang Xu 861364054@ 123456qq.com School of Pharmacy, Liaoning University of Traditional Chinese Medicine , Dalian116600, China
                Gui-Hua Bao 836788623@ 123456qq.com School of Mongol Medicine, Inner Mongolia University for Nationalities , Tongliao028000, China
                Article
                1882894
                10.1080/23802359.2021.1882894
                7954411
                33763576
                d1ad4047-87ac-49f3-aa06-82fc5173bb42
                © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 1, Tables: 0, Pages: 3, Words: 1277
                Categories
                Research Article
                Mitogenome Announcement

                mitochondrial genome,aconitum kusnezoffii,ranunculaceae

                Comments

                Comment on this article