23
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Non-invasive respiratory support paths in hospitalized patients with COVID-19 proposal of an algorithm

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          COVID-19 related Acute Respiratory Failure, may be successfully treated with Conventional Oxygen therapy, High Flow Nasal Cannula, Continuous Positive Airway Pressure or Bi-level Positive-Pressure ventilation. Despite the accumulated data in favor of the use of different Non-invasive Respiratory therapies in COVID-19 related Acute Respiratory Failure, it is not fully understood when start, escalate and de-escalate the best respiratory supportive option for the different timing of the disease. Based on the current published experience with Non-invasive Respiratory therapies in COVID-19 related Acute Respiratory Failure, we propose an algorithm in deciding when to start, when to stop and when to wean different NIRT. This strategy may help clinicians in better choosing NIRT during this second COVID-19 wave and beyond.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19)

          Supplemental Digital Content is available in the text.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study

            Background Patients with COVID-19 can develop acute respiratory distress syndrome (ARDS), which is associated with high mortality. The aim of this study was to examine the functional and morphological features of COVID-19-associated ARDS and to compare these with the characteristics of ARDS unrelated to COVID-19. Methods This prospective observational study was done at seven hospitals in Italy. We enrolled consecutive, mechanically ventilated patients with laboratory-confirmed COVID-19 and who met Berlin criteria for ARDS, who were admitted to the intensive care unit (ICU) between March 9 and March 22, 2020. All patients were sedated, paralysed, and ventilated in volume-control mode with standard ICU ventilators. Static respiratory system compliance, the ratio of partial pressure of arterial oxygen to fractional concentration of oxygen in inspired air, ventilatory ratio (a surrogate of dead space), and D-dimer concentrations were measured within 24 h of ICU admission. Lung CT scans and CT angiograms were done when clinically indicated. A dataset for ARDS unrelated to COVID-19 was created from previous ARDS studies. Survival to day 28 was assessed. Findings Between March 9 and March 22, 2020, 301 patients with COVID-19 met the Berlin criteria for ARDS at participating hospitals. Median static compliance was 41 mL/cm H2O (33–52), which was 28% higher than in the cohort of patients with ARDS unrelated to COVID-19 (32 mL/cm H2O [25–43]; p<0·0001). 17 (6%) of 297 patients with COVID-19-associated ARDS had compliances greater than the 95th percentile of the classical ARDS cohort. Total lung weight did not differ between the two cohorts. CT pulmonary angiograms (obtained in 23 [8%] patients with COVID-19-related ARDS) showed that 15 (94%) of 16 patients with D-dimer concentrations greater than the median had bilateral areas of hypoperfusion, consistent with thromboembolic disease. Patients with D-dimer concentrations equal to or less than the median had ventilatory ratios lower than those of patients with D-dimer concentrations greater than the median (1·66 [1·32–1·95] vs 1·90 [1·50–2·33]; p=0·0001). Patients with static compliance equal to or less than the median and D-dimer concentrations greater than the median had markedly increased 28-day mortality compared with other patient subgroups (40 [56%] of 71 with high D-dimers and low compliance vs 18 [27%] of 67 with low D-dimers and high compliance, 13 [22%] of 60 with low D-dimers and low compliance, and 22 [35%] of 63 with high D-dimers and high compliance, all p=0·0001). Interpretation Patients with COVID-19-associated ARDS have a form of injury that, in many aspects, is similar to that of those with ARDS unrelated to COVID-19. Notably, patients with COVID-19-related ARDS who have a reduction in respiratory system compliance together with increased D-dimer concentrations have high mortality rates. Funding None.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An Index Combining Respiratory Rate and Oxygenation to Predict Outcome of Nasal High-Flow Therapy

              Rationale: One important concern during high-flow nasal cannula (HFNC) therapy in patients with acute hypoxemic respiratory failure is to not delay intubation. Objectives: To validate the diagnostic accuracy of an index (termed ROX and defined as the ratio of oxygen saturation as measured by pulse oximetry/FiO2 to respiratory rate) for determining HFNC outcome (need or not for intubation). Methods: This was a 2-year multicenter prospective observational cohort study including patients with pneumonia treated with HFNC. Identification was through Cox proportional hazards modeling of ROX association with HFNC outcome. The most specific cutoff of the ROX index to predict HFNC failure and success was assessed. Measurements and Main Results: Among the 191 patients treated with HFNC in the validation cohort, 68 (35.6%) required intubation. The prediction accuracy of the ROX index increased over time (area under the receiver operating characteristic curve: 2 h, 0.679; 6 h, 0.703; 12 h, 0.759). ROX greater than or equal to 4.88 measured at 2 (hazard ratio, 0.434; 95% confidence interval, 0.264-0.715; P = 0.001), 6 (hazard ratio, 0.304; 95% confidence interval, 0.182-0.509; P < 0.001), or 12 hours (hazard ratio, 0.291; 95% confidence interval, 0.161-0.524; P < 0.001) after HFNC initiation was consistently associated with a lower risk for intubation. A ROX less than 2.85, less than 3.47, and less than 3.85 at 2, 6, and 12 hours of HFNC initiation, respectively, were predictors of HFNC failure. Patients who failed presented a lower increase in the values of the ROX index over the 12 hours. Among components of the index, oxygen saturation as measured by pulse oximetry/FiO2 had a greater weight than respiratory rate. Conclusions: In patients with pneumonia with acute respiratory failure treated with HFNC, ROX is an index that can help identify those patients with low and those with high risk for intubation. Clinical trial registered with www.clinicaltrials.gov (NCT02845128).
                Bookmark

                Author and article information

                Journal
                Pulmonology
                Pulmonology
                Pulmonology
                Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U.
                2531-0429
                2531-0437
                20 January 2021
                20 January 2021
                Affiliations
                [a ]Facultyof Medicine-Porto University, Portugal
                [b ]Pulmonology and Respiratory Intensive Care Unit, S Donato Hospital, Arezzo, Italy
                Author notes
                [* ]Corresponding author.
                Article
                S2531-0437(20)30265-8
                10.1016/j.pulmoe.2020.12.005
                7816939
                33516668
                d1618efd-d5bf-491b-b419-c48773407061
                © 2021 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 9 December 2020
                : 17 December 2020
                Categories
                Special Article

                covid-19,high-flow nasal cannula,cpap,bilevel-pap,awake proning

                Comments

                Comment on this article