9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Phase 1–2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Mutation of SOD1 in ALS: a gain of a loss of function.

          Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by motoneuron loss. Some familial cases (fALS) are linked to mutations of superoxide dismutase type-1 (SOD1), an antioxidant enzyme whose activity is preserved in most mutant forms. Owing to the similarities in sporadic and fALS forms, mutant SOD1 animal and cellular models are a useful tool to study the disease. In transgenic mice expressing either wild-type (wt) human SOD1 or mutant G93A-SOD1, we found that wtSOD1 was present in cytoplasm and in nuclei of motoneurons, whereas mutant SOD1 was mainly cytoplasmic. Similar results were obtained in immortalized motoneurons (NSC34 cells) expressing either wtSOD1 or G93A-SOD1. Analyzing the proteasome activity, responsible for misfolded protein clearance, in the two subcellular compartments, we found proteasome impairment only in the cytoplasm. The effect of G93A-SOD1 exclusion from nuclei was then analyzed after oxidative stress. Cells expressing G93A-SOD1 showed a higher DNA damage compared with those expressing wtSOD1, possibly because of a loss of nuclear protection. The toxicity of mutant SOD1 might, therefore, arise from an initial misfolding (gain of function) reducing nuclear protection from the active enzyme (loss of function in the nuclei), a process that may be involved in ALS pathogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS.

            Amyotrophic lateral sclerosis (ALS) is a serious neurodegenerative disorder that is characterized by the selective death of motor neurons. While the fundamental cause of the disorder is still unclear, the first identified risk gene, Cu,Zn superoxide dismutase (SOD1), has led to the proposal of several mechanisms that are relevant to its pathogenesis. These include excitotoxicity, oxidative stress, ER stress, mitochondrial dysfunction, axonal transport disruption, prion-like propagation, and non-cell autonomous toxicity of neuroglia. Recent evidence suggests that the toxicity of the misfolded wild-type SOD1 (SOD1(WT)) is involved in the pathogenesis of sporadic cases. Yet to what extent SOD1 contributes to neurotoxicity in ALS cases generally is unknown. This review discusses the toxic mechanisms of mutant SOD1 (SOD1(mut)) and misfolded SOD1(WT) in the context of ALS as well as the potential implication of these mechanisms in SOD1 mutation-negative ALS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antisense oligonucleotides in neurological disorders

              The introduction of genetics revolutionized the field of neurodegenerative and neuromuscular diseases and has provided considerable insight into the underlying pathomechanisms. Nevertheless, effective treatment options have been limited. This changed recently when antisense oligonucleotides (ASOs) could be translated from in vitro and experimental animal studies into clinical practice. In 2016, two ASOs were approved by the United States US Food and Drug Administration (FDA) and demonstrated remarkable efficacy in Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). ASOs are synthetic single-stranded strings of nucleic acids. They selectively bind to specific premessenger ribonucleic acid (pre-mRNA)/mRNA sequences and alter protein synthesis by several mechanisms of action. Thus, apart from gene replacement, ASOs may therefore provide the most direct therapeutic strategy for influencing gene expression. In this review, we shall discuss basic mechanisms of ASO action, the role of chemical modifications needed to improve the pharmacodynamic and pharmacokinetic properties of ASOs, and we shall then focus on several ASOs developed for the treatment of neurodegenerative and neuromuscular disorders, including SMA, DMD, myotonic dystrophies, Huntington’s disease, amyotrophic lateral sclerosis and Alzheimer’s disease.
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                July 09 2020
                July 09 2020
                : 383
                : 2
                : 109-119
                Affiliations
                [1 ]From the Washington University School of Medicine, St. Louis (T.M., R.C.B., A.P.); the Healey Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston (M.C., N.A.), and Biogen, Cambridge (A.S., H.R., D.G., H.H., A.M., I.N., I.C., L.F., S.F., T.A.F.) — both in Massachusetts; the Sheffield Institute for Translational Neuroscience, University of Sheffield, and NIHR Sheffield Biomedical Research Centre and Clinical Research Facility, University of Sheffield and Sheffield Teaching...
                Article
                10.1056/NEJMoa2003715
                32640130
                cae6050a-c275-421a-955e-0663045e13c7
                © 2020
                History

                Comments

                Comment on this article