3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An analysis of the nutritional effects of Schisandra chinensis components based on mass spectrometry technology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Schisandra chinensis (Turcz.) Baill. ( S. chinensis) is a Traditional Chinese medicinal herb that can be used both for medicinal purposes and as a food ingredient due to its beneficial properties, and it is enriched with a wide of natural plant nutrients, including flavonoids, phenolic acids, anthocyanins, lignans, triterpenes, organic acids, and sugars. At present, there is lack of comprehensive study or systemic characterization of nutritional and active ingredients of S. chinensis using innovative mass spectrometry techniques.

          Methods

          The comprehensive review was conducted by searching the PubMed databases for relevant literature of various mass spectrometry techniques employed in the analysis of nutritional components in S. chinensis, as well as their main nutritional effects. The literature search covered the past 5 years until March 15, 2023.

          Results

          The potential nutritional effects of S. chinensis are discussed, including its ability to enhance immunity, function as an antioxidant, anti-allergen, antidepressant, and anti-anxiety agent, as well as its ability to act as a sedative-hypnotic and improve memory, cognitive function, and metabolic imbalances. Meanwhile, the use of advanced mass spectrometry detection technologies have the potential to enable the discovery of new nutritional components of S. chinensis, and to verify the effects of different extraction methods on these components. The contents of anthocyanins, lignans, organic acids, and polysaccharides, the main nutritional components in S. chinensis, are also closely associated to its quality.

          Conclusion

          This review will provide guidelines for an in-depth study on the nutritional value of S. chinensis and for the development of healthy food products with effective components.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: not found

          Role of nrf2 in oxidative stress and toxicity.

          Qiang Ma (2013)
          Organismal life encounters reactive oxidants from internal metabolism and environmental toxicant exposure. Reactive oxygen and nitrogen species cause oxidative stress and are traditionally viewed as being harmful. On the other hand, controlled production of oxidants in normal cells serves useful purposes to regulate signaling pathways. Reactive oxidants are counterbalanced by complex antioxidant defense systems regulated by a web of pathways to ensure that the response to oxidants is adequate for the body's needs. A recurrent theme in oxidant signaling and antioxidant defense is reactive cysteine thiol-based redox signaling. The nuclear factor erythroid 2-related factor 2 (Nrf2) is an emerging regulator of cellular resistance to oxidants. Nrf2 controls the basal and induced expression of an array of antioxidant response element-dependent genes to regulate the physiological and pathophysiological outcomes of oxidant exposure. This review discusses the impact of Nrf2 on oxidative stress and toxicity and how Nrf2 senses oxidants and regulates antioxidant defense.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030

            Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are increasingly a cause of cirrhosis and hepatocellular carcinoma globally. This burden is expected to increase as epidemics of obesity, diabetes and metabolic syndrome continue to grow. The goal of this analysis was to use a Markov model to forecast NAFLD disease burden using currently available data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pharmacology of Schisandra chinensis Bail.: an overview of Russian research and uses in medicine.

              Schisandra chinensis (Turcz.) Bail. is often referred to as an example of a medicinal plant with use in modern Chinese medicine. However, Schisandra chinensis first gained recognition as an adaptogen in the official medicine of the USSR in the early 1960s, principally as a result of the large number of pharmacological and clinical studies carried out by Russian scientists in the preceding two decades. Schizandra has now secured an established position within the medicine of Russia/USSR as evidenced by the inclusion of the drug in recent editions of the National Pharmacopoeia of the USSR and in the State Register of Drugs. Pharmacological studies on animals have shown that Schizandra increases physical working capacity and affords a stress-protective effect against a broad spectrum of harmful factors including heat shock, skin burn, cooling, frostbite, immobilisation, swimming under load in an atmosphere with decreased air pressure, aseptic inflammation, irradiation, and heavy metal intoxication. The phytoadaptogen exerts an effect on the central nervous, sympathetic, endocrine, immune, respiratory, cardiovascular, gastrointestinal systems, on the development of experimental atherosclerosis, on blood sugar and acid-base balance, and on uterus myotonic activity. Studies on isolated organs, tissues, cells and enzymes have revealed that Schizandra preparations exhibit strong antioxidant activities and affect smooth muscles, arachidonic acid release, biosynthesis of leukotriene B(4) in leukocytes, platelet activating factor activity, carbohydrate-phosphorus metabolism, the formation of heat shock protein and polyamines, tissue respiration and oxygen consumption, and the tolerance of an organism to oxygen intoxication. In healthy subjects, Schizandra increases endurance and accuracy of movement, mental performance and working capacity, and generates alterations in the basal levels of nitric oxide and cortisol in blood and saliva with subsequent effects on the blood cells, vessels and CNS. Numerous clinical trials have demonstrated the efficiency of Schizandra in asthenia, neuralgic and psychiatric (neurosis, psychogenic depression, astheno-depressive states, schizophrenia and alcoholism) disorders, in impaired visual function, hypotension and cardiotonic disorders, in epidemic waves of influenza, in chronic sinusitis, otitis, neuritis and otosclerosis, in pneumonia, radioprotection of the fetoplacental system of pregnant women, allergic dermatitis, acute gastrointestinal diseases, gastric hyper- and hypo-secretion, chronic gastritis, stomach and duodenal ulcers, wound healing and trophic ulcers. This review describes the considerable diversity of pharmacological effects of Schisandra chinensis reported in numerous studies carried out in the former USSR and which have been confirmed over more than 40 years of use of the plant as an official medicinal remedy. Such knowledge can be applied in the expansion of the use of Schizandra in the pharmacotherapy of European and other countries as well as for the further discovery of new drugs based on the lignans that constitute the main secondary metabolites of this plant.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Nutr
                Front Nutr
                Front. Nutr.
                Frontiers in Nutrition
                Frontiers Media S.A.
                2296-861X
                25 July 2023
                2023
                : 10
                : 1227027
                Affiliations
                [1] 1Department of Pediatrics, Henan University of Chinese Medicine , Zhengzhou, Henan, China
                [2] 2School of Pharmacy, China Pharmaceutical University , Nanjing, Jiangsu, China
                [3] 3Department of Pediatrics, The First Affiliated Hospital of Henan University of CM , Zhengzhou, Henan, China
                [4] 4Department of Internal Medicine, Digestive Disease Section, Yale University , New Haven, CT, United States
                Author notes

                Edited by: Chunxue Yang, Sun Yat-sen University, China

                Reviewed by: Pengfei Wu, Nanjing Forestry University, China; Hangbiao Jin,Zhejiang University of Technology, China

                *Correspondence: Xinshou Ouyang, xinshou.ouyang@ 123456yale.edu

                These authors have contributed equally to this work

                Article
                10.3389/fnut.2023.1227027
                10408133
                c87ca1ab-b712-458a-8388-65f9a57060cf
                Copyright © 2023 Jia, Zhou, Lou, Yang, Zhao, Ouyang and Huang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 May 2023
                : 12 July 2023
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 127, Pages: 15, Words: 14010
                Funding
                Funded by: 2022 Leading Talents of Science and Technology Innovation in Zhongyuan
                Award ID: 82174187
                Award ID: 234200510028
                Funded by: Leading Talent Project of Traditional Chinese Medicine in Henan Province
                Award ID: 2021
                Award ID: 8
                Funded by: General Projects of National Natural Science Foundation of China in 2021
                Categories
                Nutrition
                Review
                Custom metadata
                Food Chemistry

                schisandra chinensis (turcz.) baill,schisandra sphenanthera rehd. et wits,mass spectrometry,active components,nutritional value,dietary supplements

                Comments

                Comment on this article