51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Achieving high coverage of larval-stage mosquito surveillance: challenges for a community-based mosquito control programme in urban Dar es Salaam, Tanzania

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Preventing malaria by controlling mosquitoes in their larval stages requires regular sensitive monitoring of vector populations and intervention coverage. The study assessed the effectiveness of operational, community-based larval habitat surveillance systems within the Urban Malaria Control Programme (UMCP) in urban Dar es Salaam, Tanzania.

          Methods

          Cross-sectional surveys were carried out to assess the ability of community-owned resource persons (CORPs) to detect mosquito breeding sites and larvae in areas with and without larviciding. Potential environmental and programmatic determinants of habitat detection coverage and detection sensitivity of mosquito larvae were recorded during guided walks with 64 different CORPs to assess the accuracy of data each had collected the previous day.

          Results

          CORPs reported the presence of 66.2% of all aquatic habitats (1,963/2,965), but only detected Anopheles larvae in 12.6% (29/230) of habitats that contained them. Detection sensitivity was particularly low for late-stage Anopheles (2.7%, 3/111), the most direct programmatic indicator of malaria vector productivity. Whether a CORP found a wet habitat or not was associated with his/her unfamiliarity with the area (Odds Ratio (OR) [95% confidence interval (CI)] = 0.16 [0.130, 0.203], P < 0.001), the habitat type (P < 0.001) or a fence around the compound (OR [95%CI] = 0.50 [0.386, 0.646], P < 0.001). The majority of mosquito larvae (Anophelines 57.8% (133/230) and Culicines 55.9% (461/825) were not reported because their habitats were not found. The only factor affecting detection of Anopheline larvae in habitats that were reported by CORPs was larviciding, which reduced sensitivity (OR [95%CI] = 0.37 [0.142, 0.965], P = 0.042).

          Conclusions

          Accessibility of habitats in urban settings presents a major challenge because the majority of compounds are fenced for security reasons. Furthermore, CORPs under-reported larvae especially where larvicides were applied. This UMCP system for larval surveillance in cities must be urgently revised to improve access to enclosed compounds and the sensitivity with which habitats are searched for larvae.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Urbanization, malaria transmission and disease burden in Africa.

          Many attempts have been made to quantify Africa's malaria burden but none has addressed how urbanization will affect disease transmission and outcome, and therefore mortality and morbidity estimates. In 2003, 39% of Africa's 850 million people lived in urban settings; by 2030, 54% of Africans are expected to do so. We present the results of a series of entomological, parasitological and behavioural meta-analyses of studies that have investigated the effect of urbanization on malaria in Africa. We describe the effect of urbanization on both the impact of malaria transmission and the concomitant improvements in access to preventative and curative measures. Using these data, we have recalculated estimates of populations at risk of malaria and the resulting mortality. We find there were 1,068,505 malaria deaths in Africa in 2000 - a modest 6.7% reduction over previous iterations. The public-health implications of these findings and revised estimates are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Malaria transmission in urban sub-Saharan Africa.

            The rapid increase in the world's urban population has major implications for the epidemiology of malaria. A review of malaria transmission in sub-Saharan African cities shows the strong likelihood of transmission occurring within these sprawling cities, whatever the size or characteristics of their bioecologic environment. A meta-analysis of results from studies of malaria transmission in sub-Saharan Africa shows a loose linear negative relationship between mean annual entomologic inoculation rates (EIR) and the level of urbanicity. Few studies have failed to find entomologic evidence of some transmission. Our results show mean annual EIRs of 7.1 in the city centers, 45.8 in periurban areas, and 167.7 in rural areas. The impact of urbanization in reducing transmission is more marked in areas where the mean rainfall is low and seasonal. Considerable variation in the level of transmission exists among cities and within different districts in the same city. This article presents evidence from past literature to build a conceptual framework to begin to explain this heterogeneity. The potential for malaria epidemics owing to decreasing levels of natural immunity may be offset by negative impacts of urbanization on the larval ecology of anopheline mosquitoes. Malaria control in urban environments may be simpler as a result of urbanization; however, much of what we know about malaria transmission in rural environments might not hold in the urban context.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Historical review of malarial control in southern African with emphasis on the use of indoor residual house-spraying.

              Indoor residual house-spraying (IRS) mainly with dichlorodiphenyltrichloroethane (DDT) was the principal method by which malaria was eradicated or greatly reduced in many countries in the world between the 1940s and 1960s. In sub-Saharan Africa early malarial eradication pilot projects also showed that malaria is highly responsive to vector control by IRS but transmission could not be interrupted in the endemic tropical and lowland areas. As a result IRS was not taken to scale in most endemic areas of the continent with the exception of southern Africa and some island countries such as Reunion, Mayotte, Zanzibar, Cape Verde and Sao Tome. In southern Africa large-scale malarial control operations based on IRS with DDT and benzene hexachloride (BHC) were initiated in a number of countries to varying degrees. The objective of this review was to investigate the malarial situation before and after the introduction of indoor residual insecticide spraying in South Africa, Swaziland, Botswana, Namibia, Zimbabwe and Mozambique using historical malarial data and related information collected from National Malaria Control Programmes, national archives and libraries, as well as academic institutions in the respective countries. Immediately after the inception of IRS with insecticides, dramatic reductions in malaria and its vectors were recorded. Countries that developed National Malaria Control Programmes during this phase and had built up human and organizational resources made significant advances towards malarial control. Malaria was reduced from hyper- to meso-endemicity and from meso- to hypo-endemicity and in certain instances to complete eradication. Data are presented on the effectiveness of IRS as a malarial control tool in six southern African countries. Recent trends in and challenges to malarial control in the region are also discussed.
                Bookmark

                Author and article information

                Journal
                Malar J
                Malaria Journal
                BioMed Central
                1475-2875
                2009
                30 December 2009
                : 8
                : 311
                Affiliations
                [1 ]Ifakara Health Institute, Coordination Office, Kiko Avenue, Mikocheni, PO Box 78373, Dar es Salaam, United Republic of Tanzania
                [2 ]Liverpool School of Tropical Medicine, Vector Group, Pembroke Place, Liverpool, L3 5QA, UK
                [3 ]Durham University, School of Biological and Biomedical Sciences, South Road, Durham, DH1 3LE, UK
                [4 ]Dar es Salaam City Council, Ministry of Regional Administration and Local Government, United Republic of Tanzania
                [5 ]Department of Public Health and Epidemiology, Swiss Tropical Institute, Basel, Switzerland
                [6 ]London School of Hygiene and Tropical Medicine, Disease Control & Vector Biology Unit, Keppel Street, London, WC1E 7HT, UK
                Article
                1475-2875-8-311
                10.1186/1475-2875-8-311
                2806382
                20042071
                c72a2418-9e3f-4ae6-8743-750e60496c2a
                Copyright ©2009 Chaki et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 September 2009
                : 30 December 2009
                Categories
                Research

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article

                scite_
                65
                1
                73
                0
                Smart Citations
                65
                1
                73
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content84

                Cited by33

                Most referenced authors312