78
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis ( B. thai) in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans—leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections.

          Author Summary

          Many bacteria encounter both eukaryotic cells and other bacterial species as a part of their lifestyles. In order to compete and survive, these bacteria have evolved specialized pathways that target these distinct cell types. Type VI secretion systems (T6SSs) are bacterial protein export machines postulated to puncture targeted cells using an apparatus that shares structural similarity to bacteriophage. We investigated the role of the five T6SSs of Burkholderia thailandensis in the defense of the organism against other bacteria and higher organisms. B. thailandensis is a relatively avirulent soil saprophyte that is closely related to the human pathogen B. pseudomallei. Our work uncovered roles for two B. thailandensis T6SSs with specialized functions either in the survival of the organism in a murine host, or against another bacterial cell. We also found that B. thailandensis lacking the bacterial-targeting T6SS could not persist in a mixed biofilm with a competing bacterium. Based on the evolutionary relationship of T6SSs, and our findings that B. thailandensis engages other bacterial species in a T6S-dependent manner, we speculate that this pathway is of general significance to interbacterial interactions in polymicrobial human diseases and the environment.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data.

          O. Gascuel (1997)
          We propose an improved version of the neighbor-joining (NJ) algorithm of Saitou and Nei. This new algorithm, BIONJ, follows the same agglomerative scheme as NJ, which consists of iteratively picking a pair of taxa, creating a new mode which represents the cluster of these taxa, and reducing the distance matrix by replacing both taxa by this node. Moreover, BIONJ uses a simple first-order model of the variances and covariances of evolutionary distance estimates. This model is well adapted when these estimates are obtained from aligned sequences. At each step it permits the selection, from the class of admissible reductions, of the reduction which minimizes the variance of the new distance matrix. In this way, we obtain better estimates to choose the pair of taxa to be agglomerated during the next steps. Moreover, in comparison with NJ's estimates, these estimates become better and better as the algorithm proceeds. BIONJ retains the good properties of NJ--especially its low run time. Computer simulations have been performed with 12-taxon model trees to determine BIONJ's efficiency. When the substitution rates are low (maximum pairwise divergence approximately 0.1 substitutions per site) or when they are constant among lineages, BIONJ is only slightly better than NJ. When the substitution rates are higher and vary among lineages,BIONJ clearly has better topological accuracy. In the latter case, for the model trees and the conditions of evolution tested, the topological error reduction is on the average around 20%. With highly-varying-rate trees and with high substitution rates (maximum pairwise divergence approximately 1.0 substitutions per site), the error reduction may even rise above 50%, while the probability of finding the correct tree may be augmented by as much as 15%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function.

            MyD88, originally isolated as a myeloid differentiation primary response gene, is shown to act as an adaptor in interleukin-1 (IL-1) signaling by interacting with both the IL-1 receptor complex and IL-1 receptor-associated kinase (IRAK). Mice generated by gene targeting to lack MyD88 have defects in T cell proliferation as well as induction of acute phase proteins and cytokines in response to IL-1. Increases in interferon-gamma production and natural killer cell activity in response to IL-18 are abrogated. In vivo Th1 response is also impaired. Furthermore, IL-18-induced activation of NF-kappaB and c-Jun N-terminal kinase (JNK) is blocked in MyD88-/- Th1-developing cells. Taken together, these results demonstrate that MyD88 is a critical component in the signaling cascade that is mediated by IL-1 receptor as well as IL-18 receptor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacteriocins: evolution, ecology, and application.

              Microbes produce an extraordinary array of microbial defense systems. These include classical antibiotics, metabolic by-products, lytic agents, numerous types of protein exotoxins, and bacteriocins. The abundance and diversity of this potent arsenal of weapons are clear. Less clear are their evolutionary origins and the role they play in mediating microbial interactions. The goal of this review is to explore what we know about the evolution and ecology of the most abundant and diverse family of microbial defense systems: the bacteriocins. We summarize current knowledge of how such extraordinary protein diversity arose and is maintained in microbial populations and what role these toxins play in mediating microbial population-level and community-level dynamics. In the latter half of this review we focus on the potential role bacteriocins may play in addressing human health concerns and the current role they serve in food preservation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                August 2010
                August 2010
                26 August 2010
                : 6
                : 8
                : e1001068
                Affiliations
                [1 ]Department of Microbiology, University of Washington, Seattle, Washington, United States of America
                [2 ]Department of Medicine, University of Washington, Seattle, Washington, United States of America
                [3 ]UMR754 INRA-ENVL-UCBL-EPHE “Rétrovirus et Pathologie Comparée”, IFR 128 BioSciences Lyon-Gerland, Université Claude Bernard Lyon 1, Lyon, France
                [4 ]Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
                [5 ]Department of Immunology, University of Washington, Seattle, Washington, United States of America
                University of Texas-Houston Medical School, United States of America
                Author notes

                Conceived and designed the experiments: SS TEW FB WCC MAC RDH TTN SJS JDM. Performed the experiments: SS TEW FB WCC MAC RDH LR. Analyzed the data: SS TEW FB WCC MAC RDH TTN SJS JDM. Wrote the paper: SS JDM.

                Article
                10-PLPA-RA-3244R2
                10.1371/journal.ppat.1001068
                2928800
                20865170
                c5a8e24b-49df-46e4-b946-93aa150be3de
                Schwarz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 May 2010
                : 26 July 2010
                Page count
                Pages: 14
                Categories
                Research Article
                Microbiology/Cellular Microbiology and Pathogenesis
                Microbiology/Environmental Microbiology
                Microbiology/Microbial Evolution and Genomics
                Microbiology/Microbial Growth and Development

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article