Processing math: 100%
18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The HI-halo mass relation at redshift z1 from the Minkowski functionals of 21 cm intensity maps

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mean and the scatter of the HI content of a dark-matter halo as a function of the halo mass are useful statistics that can be used to test models of structure and galaxy formation. We investigate the possibility of constraining this HI-halo mass relation (HIHMR) from intensity maps of the redshifted 21 cm line. In particular, we use the geometry and topology of the brightness-temperature isocontours in a single frequency channel as quantified by the Minkowski functionals. First, we generate mock maps from a large N-body simulation considering the impact of thermal noise and foreground removal. We then use the Fisher information formalism to forecast constraints on a parametric model for the HIHMR. We consider a 20,000 deg2 survey (originally proposed for dark-energy science) conducted with the Square Kilometre Array Phase 1 (SKA-1) MID observatory operating in single-dish mode. For a channel bandwidth of 2 MHz, we show that an integration time of a few×104 s per pointing is sufficient to image the smoothed HI distribution at redshift z1 and to measure the HIHMR in a nearly optimal way from the Minkowski functionals. Tighter constraints on some of the parameters can be obtained by using also an independent measurement of the mean HI density. Combining the results from different frequency channels provides exquisite constraints on the evolution of the HIHMR, especially in the central frequency range of the data cube.

          Related collections

          Author and article information

          Journal
          22 January 2021
          Article
          2101.09288
          be64580f-5f69-4c23-9ce0-c1ac1af991c9

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          comments are welcome, submitted to MNRAS
          astro-ph.CO astro-ph.GA

          Cosmology & Extragalactic astrophysics,Galaxy astrophysics
          Cosmology & Extragalactic astrophysics, Galaxy astrophysics

          Comments

          Comment on this article