13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Personalized treatment supported by automated quantitative fluid analysis in active neovascular age-related macular degeneration (nAMD)—a phase III, prospective, multicentre, randomized study: design and methods

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          In neovascular age-related macular degeneration (nAMD) the exact amount of fluid and its location on optical coherence tomography (OCT) have been defined as crucial biomarkers for disease activity and therapeutic decisions. Yet in the absence of quantitative evaluation tools, real-world care outcomes are disappointing. Artificial intelligence (AI) offers a practical option for clinicians to enhance point-of-care management by analysing OCT volumes in a short time. In this protocol we present the prospective implementation of an AI-algorithm providing automated real-time fluid quantifications in a clinical real-world setting.

          Methods

          This is a prospective, multicentre, randomized (1:1) and double masked phase III clinical trial. Two-hundred-ninety patients with active nAMD will be randomized between a study arm using AI-supported fluid quantifications and another arm using conventional qualitative assessments, i.e. state-of-the-art disease management. The primary outcome is defined as the mean number of injections over 1 year. Change in BCVA is defined as a secondary outcome.

          Discussion

          Automated measurement of fluid volumes in all retinal compartments such as intraretinal fluid (IRF), and subretinal fluid (SRF) will serve as an objective tool for clinical investigators on which to base retreatment decisions. Compared to qualitative fluid assessment, retreatment decisions will be plausible and less prone to error or large variability. The underlying hypothesis is that fluid should be treated, while residual persistent or stable amounts of fluid may not benefit from further therapy. Reducing injection numbers without diminishing the visual benefit will increase overall patient safety and relieve the burden for healthcare providers.

          Trial-registration

          EudraCT-Number: 2019-003133-42

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis.

          Numerous population-based studies of age-related macular degeneration have been reported around the world, with the results of some studies suggesting racial or ethnic differences in disease prevalence. Integrating these resources to provide summarised data to establish worldwide prevalence and to project the number of people with age-related macular degeneration from 2020 to 2040 would be a useful guide for global strategies. We did a systematic literature review to identify all population-based studies of age-related macular degeneration published before May, 2013. Only studies using retinal photographs and standardised grading classifications (the Wisconsin age-related maculopathy grading system, the international classification for age-related macular degeneration, or the Rotterdam staging system) were included. Hierarchical Bayesian approaches were used to estimate the pooled prevalence, the 95% credible intervals (CrI), and to examine the difference in prevalence by ethnicity (European, African, Hispanic, Asian) and region (Africa, Asia, Europe, Latin America and the Caribbean, North America, and Oceania). UN World Population Prospects were used to project the number of people affected in 2014 and 2040. Bayes factor was calculated as a measure of statistical evidence, with a score above three indicating substantial evidence. Analysis of 129,664 individuals (aged 30-97 years), with 12,727 cases from 39 studies, showed the pooled prevalence (mapped to an age range of 45-85 years) of early, late, and any age-related macular degeneration to be 8.01% (95% CrI 3.98-15.49), 0.37% (0.18-0.77), and 8.69% (4.26-17.40), respectively. We found a higher prevalence of early and any age-related macular degeneration in Europeans than in Asians (early: 11.2% vs 6.8%, Bayes factor 3.9; any: 12.3% vs 7.4%, Bayes factor 4.3), and early, late, and any age-related macular degeneration to be more prevalent in Europeans than in Africans (early: 11.2% vs 7.1%, Bayes factor 12.2; late: 0.5% vs 0.3%, 3.7; any: 12.3% vs 7.5%, 31.3). There was no difference in prevalence between Asians and Africans (all Bayes factors <1). Europeans had a higher prevalence of geographic atrophy subtype (1.11%, 95% CrI 0.53-2.08) than Africans (0.14%, 0.04-0.45), Asians (0.21%, 0.04-0.87), and Hispanics (0.16%, 0.05-0.46). Between geographical regions, cases of early and any age-related macular degeneration were less prevalent in Asia than in Europe and North America (early: 6.3% vs 14.3% and 12.8% [Bayes factor 2.3 and 7.6]; any: 6.9% vs 18.3% and 14.3% [3.0 and 3.8]). No significant gender effect was noted in prevalence (Bayes factor <1.0). The projected number of people with age-related macular degeneration in 2020 is 196 million (95% CrI 140-261), increasing to 288 million in 2040 (205-399). These estimates indicate the substantial global burden of age-related macular degeneration. Summarised data provide information for understanding the effect of the condition and provide data towards designing eye-care strategies and health services around the world. National Medical Research Council, Singapore. Copyright © 2014 Wong et al. Open Access article distributed under the terms of CC BY-NC-ND. Published by .. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical classification of age-related macular degeneration.

            To develop a clinical classification system for age-related macular degeneration (AMD). Evidence-based investigation, using a modified Delphi process. Twenty-six AMD experts, 1 neuro-ophthalmologist, 2 committee chairmen, and 1 methodologist. Each committee member completed an online assessment of statements summarizing current AMD classification criteria, indicating agreement or disagreement with each statement on a 9-step scale. The group met, reviewed the survey results, discussed the important components of a clinical classification system, and defined new data analyses needed to refine a classification system. After the meeting, additional data analyses from large studies were provided to the committee to provide risk estimates related to the presence of various AMD lesions. Delphi review of the 9-item set of statements resulting from the meeting. Consensus was achieved in generating a basic clinical classification system based on fundus lesions assessed within 2 disc diameters of the fovea in persons older than 55 years. The committee agreed that a single term, age-related macular degeneration, should be used for the disease. Persons with no visible drusen or pigmentary abnormalities should be considered to have no signs of AMD. Persons with small drusen (<63 μm), also termed drupelets, should be considered to have normal aging changes with no clinically relevant increased risk of late AMD developing. Persons with medium drusen (≥ 63-<125 μm), but without pigmentary abnormalities thought to be related to AMD, should be considered to have early AMD. Persons with large drusen or with pigmentary abnormalities associated with at least medium drusen should be considered to have intermediate AMD. Persons with lesions associated with neovascular AMD or geographic atrophy should be considered to have late AMD. Five-year risks of progressing to late AMD are estimated to increase approximately 100 fold, ranging from a 0.5% 5-year risk for normal aging changes to a 50% risk for the highest intermediate AMD risk group. The proposed basic clinical classification scale seems to be of value in predicting the risk of late AMD. Incorporating consistent nomenclature into the practice patterns of all eye care providers may improve communication and patient care. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature.

              Intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents is increasingly used for the treatment of a wide variety of retinal diseases, including age-related macular degeneration, diabetic retinopathy and retinal vascular occlusions, and retinopathy of prematurity. Despite encouraging results in halting the disease and improving the vision, intravitreal injection of anti-VEGF agents may be associated with systemic adverse events and devastating ocular complications. In this review, we provide an overview of safety data for intravitreal injection of common anti-VEGF agents.
                Bookmark

                Author and article information

                Contributors
                ursula.schmidt-erfurth@meduniwien.ac.at
                Journal
                Eye (Lond)
                Eye (Lond)
                Eye
                Nature Publishing Group UK (London )
                0950-222X
                1476-5454
                5 July 2022
                5 July 2022
                : 1-6
                Affiliations
                [1 ]GRID grid.22937.3d, ISNI 0000 0000 9259 8492, Vienna Clinical Trial Centre (VTC), Department of Ophthalmology and Optometry, , Medical University of Vienna, ; Vienna, Austria
                [2 ]GRID grid.22937.3d, ISNI 0000 0000 9259 8492, Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, , Medical University of Vienna, ; Vienna, Austria
                [3 ]RetInSight, Vienna, Austria
                Author information
                http://orcid.org/0000-0002-9168-0894
                http://orcid.org/0000-0001-7661-4015
                http://orcid.org/0000-0002-7788-7311
                Article
                2154
                10.1038/s41433-022-02154-8
                9255834
                35790835
                bb73a777-0aa6-4cd1-94c7-c72bf222540f
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 December 2021
                : 15 June 2022
                : 16 June 2022
                Categories
                Article

                Vision sciences
                macular degeneration,prognostic markers
                Vision sciences
                macular degeneration, prognostic markers

                Comments

                Comment on this article