13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From Implantation to Birth: Insight into Molecular Melatonin Functions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Melatonin is a lipophilic hormone synthesized and secreted mainly in the pineal gland, acting as a neuroendocrine transducer of photoperiodic information during the night. In addition to this activity, melatonin has shown an antioxidant function and a key role as regulator of physiological processes related to human reproduction. Melatonin is involved in the normal outcome of pregnancy, beginning with the oocyte quality, continuing with embryo implantation, and finishing with fetal development and parturition. Melatonin has been shown to act directly on several reproductive events, including folliculogenesis, oocyte maturation, and corpus luteum (CL) formation. The molecular mechanism of action has been investigated through several studies which provide solid evidence on the connections between maternal melatonin secretion and embryonic and fetal development. Melatonin administration, reducing oxidative stress and directly acting on its membrane receptors, melatonin thyroid hormone receptors (MT1 and MT2), displays effects on the earliest phases of pregnancy and during the whole gestational period. In addition, considering the reported positive effects on the outcomes of compromised pregnancies, melatonin supplementation should be considered as an important tool for supporting fetal development, opening new opportunities for the management of several reproductive and gestational pathologies.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review.

          Free radicals generated within subcellular compartments damage macromolecules which lead to severe structural changes and functional alterations of cellular organelles. A manifestation of free radical injury to biological membranes is the process of lipid peroxidation, an autooxidative chain reaction in which polyunsaturated fatty acids in the membrane are the substrate. There is considerable evidence that damage to polyunsaturated fatty acids tends to reduce membrane fluidity. However, adequate levels of fluidity are essential for the proper functioning of biological membranes. Thus, there is considerable interest in antioxidant molecules which are able to stabilize membranes because of their protective effects against lipid peroxidation. Melatonin is an indoleamine that modulates a wide variety of endocrine, neural and immune functions. Over the last two decades, intensive research has proven this molecule, as well as its metabolites, to possess substantial antioxidant activity. In addition to their ability to scavenge several reactive oxygen and nitrogen species, melatonin increases the activity of the glutathione redox enzymes, that is, glutathione peroxidase and reductase, as well as other antioxidant enzymes. These beneficial effects of melatonin are more significant because of its small molecular size and its amphipathic behaviour, which facilitates ease of melatonin penetration into every subcellular compartment. In the present work, we review the current information related to the beneficial effects of melatonin in maintaining the fluidity of biological membranes against free radical attack, and further, we discuss its implications for ageing and disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation.

            Many underlying causes of human infertility have been overcome by using in vitro fertilization (IVF) and embryo transfer (ET) techniques. Nevertheless, implantation rates in IVF programs remain low despite the transfer of apparently healthy embryos. This suggests that there are problems with the differentiation of the uterus to the receptive state in response to the ovarian hormones estrogen and progesterone. The molecular basis of this receptive state when the uterine environment is conducive to blastocyst acceptance and implantation remains poorly understood. Normally, the "window" of uterine receptivity lasts for a limited time. Using ETs and the progesterone-treated delayed-implantation model in mice, we demonstrate here that levels of estrogen within a very narrow range determine the duration of the window of uterine receptivity. Although estrogen at different physiological concentrations can initiate implantation, we find that the window of uterine receptivity remains open for an extended period at lower estrogen levels but rapidly closes at higher levels. The uterine refractoriness that follows the receptive state at high estrogen levels is accompanied by aberrant uterine expression of implantation-related genes. These results suggest that careful regulation of estrogen levels is one of the important factors for improvement of female fertility in IVFET programs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The p53 family: guardians of maternal reproduction.

              The p53 family of proteins consists of p53, p63 and p73, which are transcription factors that affect both cancer and development. It is now emerging that these proteins also regulate maternal reproduction. Whereas p63 is important for maturation of the egg, p73 ensures normal mitosis in the developing blastocyst. p53 subsequently regulates implantation of the embryo through transcriptional control of leukaemia inhibitory factor. Elucidating the cell biological basis of how these factors regulate female fertility may lead to new approaches to the control of human maternal reproduction.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                17 September 2018
                September 2018
                : 19
                : 9
                : 2802
                Affiliations
                [1 ]Department of R&D, Lolipharma Srl, 00156 Rome, Italy; m.tilotta@ 123456lolipharma.it
                [2 ]Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; minini.1699603@ 123456studenti.uniroma1.it
                [3 ]Department of Developmental and Social Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy; vunfer@ 123456gmail.com
                Author notes
                Author information
                https://orcid.org/0000-0001-9780-4643
                Article
                ijms-19-02802
                10.3390/ijms19092802
                6164374
                30227688
                b3e9d011-2fd1-430e-93fa-6b3ee293e00a
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 July 2018
                : 14 September 2018
                Categories
                Review

                Molecular biology
                melatonin,pregnancy,oocyte quality,embryo implantation,fetal development
                Molecular biology
                melatonin, pregnancy, oocyte quality, embryo implantation, fetal development

                Comments

                Comment on this article