11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Melatonin Promotes Uterine and Placental Health: Potential Molecular Mechanisms

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The development of the endometrium is a cyclic event tightly regulated by hormones and growth factors to coordinate the menstrual cycle while promoting a suitable microenvironment for embryo implantation during the “receptivity window”. Many women experience uterine failures that hamper the success of conception, such as endometrium thickness, endometriosis, luteal phase defects, endometrial polyps, adenomyosis, viral infection, and even endometrial cancer; most of these disturbances involve changes in endocrine components or cell damage. The emerging evidence has proven that circadian rhythm deregulation followed by low circulating melatonin is associated with low implantation rates and difficulties to maintain pregnancy. Given that melatonin is a circadian-regulating hormone also involved in the maintenance of uterine homeostasis through regulation of numerous pathways associated with uterine receptivity and gestation, the success of female reproduction may be dependent on the levels and activity of uterine and placental melatonin. Based on the fact that irregular production of maternal and placental melatonin is related to recurrent spontaneous abortion and maternal/fetal disturbances, melatonin replacement may offer an excellent opportunity to restore normal physiological function of the affected tissues. By alleviating oxidative damage in the placenta, melatonin favors nutrient transfer and improves vascular dynamics at the uterine–placental interface. This review focuses on the main in vivo and in vitro functions of melatonin on uterine physiological processes, such as decidualization and implantation, and also on the feto-maternal tissues, and reviews how exogenous melatonin functions from a mechanistic standpoint to preserve the organ health. New insights on the potential signaling pathways whereby melatonin resists preeclampsia and endometriosis are further emphasized in this review.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy.

          T-helper (Th) cells play a central role in modulating immune responses. The Th1/Th2 paradigm has now developed into the new Th1/Th2/Th17 paradigm. In addition to effector cells, Th cells are regulated by regulatory T (Treg) cells. Their capacity to produce cytokines is suppressed by immunoregulatory cytokines such as transforming growth factor (TGF)-beta and interleukin (IL)-10 or by cell-to-cell interaction. Here, we will review the immunological environment in normal pregnancy and complicated pregnancy, such as implantation failure, abortion, preterm labor, and preeclampsia from the viewpoint of the new Th1/Th2/Th17 and Treg paradigms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cyclic decidualization of the human endometrium in reproductive health and failure.

            Decidualization denotes the transformation of endometrial stromal fibroblasts into specialized secretory decidual cells that provide a nutritive and immunoprivileged matrix essential for embryo implantation and placental development. In contrast to most mammals, decidualization of the human endometrium does not require embryo implantation. Instead, this process is driven by the postovulatory rise in progesterone levels and increasing local cAMP production. In response to falling progesterone levels, spontaneous decidualization causes menstrual shedding and cyclic regeneration of the endometrium. A growing body of evidence indicates that the shift from embryonic to maternal control of the decidual process represents a pivotal evolutionary adaptation to the challenge posed by invasive and chromosomally diverse human embryos. This concept is predicated on the ability of decidualizing stromal cells to respond to individual embryos in a manner that either promotes implantation and further development or facilitates early rejection. Furthermore, menstruation and cyclic regeneration involves stem cell recruitment and renders the endometrium intrinsically capable of adapting its decidual response to maximize reproductive success. Here we review the endocrine, paracrine, and autocrine cues that tightly govern this differentiation process. In response to activation of various signaling pathways and genome-wide chromatin remodeling, evolutionarily conserved transcriptional factors gain access to the decidua-specific regulatory circuitry. Once initiated, the decidual process is poised to transit through distinct phenotypic phases that underpin endometrial receptivity, embryo selection, and, ultimately, resolution of pregnancy. We discuss how disorders that subvert the programming, initiation, or progression of decidualization compromise reproductive health and predispose for pregnancy failure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities.

              Although progesterone has been recognized as essential for the establishment and maintenance of pregnancy, this steroid hormone has been recently implicated to have a functional role in a number of other reproductive events. The physiological effects of progesterone are mediated by the progesterone receptor (PR), a member of the nuclear receptor superfamily of transcription factors. In most cases the PR is induced by estrogen, implying that many of the in vivo effects attributed to progesterone could also be the result of concomitantly administered estrogen. Therefore, to clearly define those physiological events that are specifically attributable to progesterone in vivo, we have generated a mouse model carrying a null mutation of the PR gene using embryonic stem cell/gene targeting techniques. Male and female embryos homozygous for the PR mutation developed normally to adulthood. However, the adult female PR mutant displayed significant defects in all reproductive tissues. These included an inability to ovulate, uterine hyperplasia and inflammation, severely limited mammary gland development, and an inability to exhibit sexual behavior. Collectively, these results provide direct support for progesterone's role as a pleiotropic coordinator of diverse reproductive events that together ensure species survival.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                31 December 2019
                January 2020
                : 21
                : 1
                : 300
                Affiliations
                [1 ]Department of Anatomy-IBB/UNESP, Institute of Biosciences of Botucatu, Univ. Estadual Paulista, Botucatu, São Paulo 18618-689, Brazil; luiz.lupi@ 123456unesp.br (L.A.L.); maira.cucielo@ 123456gmail.com (M.S.C.); hspaulonci@ 123456gmail.com (H.S.S.)
                [2 ]Department of Cellular and Structural Biology, UT Health, San Antonio, TX 78229, USA; REITER@ 123456uthscsa.edu
                [3 ]Department of Biology and Technology—UENP/CLM—Universidade Estadual do Norte do Paraná, Bandeirantes, Paraná 86360-000, Brazil; fabio.seiva@ 123456uenp.edu.br
                Author notes
                [* ]Correspondence: luiz-gustavo.chuffa@ 123456unesp.br ; Tel.: +55-14-3880-0027
                Author information
                https://orcid.org/0000-0002-0199-3396
                Article
                ijms-21-00300
                10.3390/ijms21010300
                6982088
                31906255
                ebfa70f2-bc58-49f4-ba9c-666cdc0e33b2
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 November 2019
                : 30 December 2019
                Categories
                Review

                Molecular biology
                melatonin,circadian clock,decidualization,uterine receptivity,implantation,placenta,endometriosis

                Comments

                Comment on this article