20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The acute effects of inulin and resistant-starch on postprandial serum short-chain fatty acids and second-meal glycaemic response in lean and overweight humans

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Objectives

          Colonic-fermentation of dietary-fibre to short-chain fatty-acids (SCFA) may protect against obesity and diabetes, but excess production of colonic SCFA has been implicated in the promotion of obesity. We aimed to compare the effects of two fermentable-fibres on postprandial SCFA and second-meal glycaemic response in healthy overweight or obese (OWO) vs lean (LN) participants.

          Methods

          using a randomized cross-over design, 13 OWO and 12 LN overnight fasted participants were studied for 6h on 3 separate days after consuming 300mL water containing 75g glucose(GLU) as control or with 24g inulin(IN) or 28g resistant-starch(RS). A standard lunch was served 4h after the test-drink.

          Results

          Within the entire group, compared to control, IN significantly increased serum SCFA (p<0.001) but had no effect on FFA or second-meal glucose and insulin responses. In contrast, RS had no significant effect on SCFA but reduced FFA rebound (p<0.001) and second-meal glucose (p=0.002) and insulin responses (p=0.024). OWO had similar postprandial serum SCFA and glucose concentrations but significantly greater insulin and FFA than LN. However, the effects of IN and RS on SCFA, glucose, insulin and FFA responses were similar in LN and OWO.

          Conclusions

          Resistant-starch has favorable second-meal effects, likely related to changes in FFA rather than SCFA concentrations. However, a longer study may be needed to demonstrate an effect of RS on SCFA. We found no evidence that acute increases in SCFA after IN reduce glycaemic responses in humans, and we were unable to detect a significant difference in SCFA responses between OWO vs LN subjects.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Compendium of physical activities: classification of energy costs of human physical activities.

          A coding scheme is presented for classifying physical activity by rate of energy expenditure, i.e., by intensity. Energy cost was established by a review of published and unpublished data. This coding scheme employs five digits that classify activity by purpose (i.e., sports, occupation, self-care), the specific type of activity, and its intensity as the ratio of work metabolic rate to resting metabolic rate (METs). Energy expenditure in kilocalories or kilocalories per kilogram body weight can be estimated for all activities, specific activities, or activity types. General use of this coding system would enhance the comparability of results across studies using self reports of physical activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut

            Background Fecal bacteriotherapy (‘stool transplant’) can be effective in treating recurrent Clostridium difficile infection, but concerns of donor infection transmission and patient acceptance limit its use. Here we describe the use of a stool substitute preparation, made from purified intestinal bacterial cultures derived from a single healthy donor, to treat recurrent C. difficile infection that had failed repeated standard antibiotics. Thirty-three isolates were recovered from a healthy donor stool sample. Two patients who had failed at least three courses of metronidazole or vancomycin underwent colonoscopy and the mixture was infused throughout the right and mid colon. Pre-treatment and post-treatment stool samples were analyzed by 16 S rRNA gene sequencing using the Ion Torrent platform. Results Both patients were infected with the hyper virulent C. difficile strain, ribotype 078. Following stool substitute treatment, each patient reverted to their normal bowel pattern within 2 to 3 days and remained symptom-free at 6 months. The analysis demonstrated that rRNA sequences found in the stool substitute were rare in the pre-treatment stool samples but constituted over 25% of the sequences up to 6 months after treatment. Conclusion This proof-of-principle study demonstrates that a stool substitute mixture comprising a multi-species community of bacteria is capable of curing antibiotic-resistant C. difficile colitis. This benefit correlates with major changes in stool microbial profile and these changes reflect isolates from the synthetic mixture. Trial registration Clinical trial registration number: CinicalTrials.gov NCT01372943
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans

              Background/Objectives: High dietary fibre intakes may protect against obesity by influencing colonic fermentation and the colonic microbiota. Though, recent studies suggest that increased colonic fermentation contributes to adiposity. Diet influences the composition of the gut microbiota. Previous research has not evaluated dietary intakes, body mass index (BMI), faecal microbiota and short chain fatty acid (SCFA) in the same cohort. Our objectives were to compare dietary intakes, faecal SCFA concentrations and gut microbial profiles in healthy lean (LN, BMI⩽25) and overweight or obese (OWOB, BMI>25) participants. Design: We collected demographic information, 3-day diet records, physical activity questionnaires and breath and faecal samples from 94 participants of whom 52 were LN and 42 OWOB. Results: Dietary intakes and physical activity levels did not differ significantly between groups. OWOB participants had higher faecal acetate (P=0.05), propionate (P=0.03), butyrate (P=0.05), valerate (P=0.03) and total short chain fatty acid (SCFA; P=0.02) concentrations than LN. No significant differences in Firmicutes to Bacteroides/Prevotella (F:B) ratio was observed between groups. However, in the entire cohort, Bacteroides/Prevotella counts were negatively correlated with faecal total SCFA (r=−0.32, P=0.002) and F:B ratio was positively correlated with faecal total SCFA (r=0.42, P<0.0001). Principal component analysis identified distinct gut microbiota and SCFA–F:B ratio components, which together accounted for 59% of the variation. F:B ratio loaded with the SCFA and not with the microbiota suggesting that SCFA and F:B ratio vary together and may be interrelated. Conclusions: The results support the hypothesis that colonic fermentation patterns may be altered, leading to different faecal SCFA concentrations in OWOB compared with LN humans. More in-depth studies looking at the metabolic fate of SCFA produced in LN and OWOB participants are needed in order to determine the role of SCFA in obesity.
                Bookmark

                Author and article information

                Journal
                8804070
                3570
                Eur J Clin Nutr
                Eur J Clin Nutr
                European journal of clinical nutrition
                0954-3007
                1476-5640
                8 December 2016
                14 December 2016
                February 2017
                01 August 2017
                : 71
                : 2
                : 227-233
                Affiliations
                [1 ]Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
                [2 ]Biostatistics Unit, St. Joseph’s Healthcare Hamilton, 50 Charlton East, Hamilton, ON, Canada
                [3 ]Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
                [4 ]Clinical Nutrition and Risk Factor Modification Centre, and Division of Endocrinology and Metabolism and Li Ka Shing Knowledge Institute, St. Michael’s Hospital Toronto, Ontario, Canada
                Author notes
                Corresponding author: Dr Thomas MS Wolever, Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College St, Toronto, ON, M5S 3E2 Canada PHONE: 416-978-5556 FAX:416-971-3130; thomas.wolever@ 123456utoronto.ca
                Article
                CAMS6304
                10.1038/ejcn.2016.248
                5298923
                27966565
                b17be2c1-261a-4a51-971b-9c070efc582b

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Nutrition & Dietetics
                sort-chain fatty acid,fermentation,glucose,ffa,obese,microbiota
                Nutrition & Dietetics
                sort-chain fatty acid, fermentation, glucose, ffa, obese, microbiota

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content145

                Cited by25

                Most referenced authors916