29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Diabetic Osteoporosis: A Review of Its Traditional Chinese Medicinal Use and Clinical and Preclinical Research

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim. The incidence of diabetic osteoporosis (DOP) is increasing due to lack of effective management over the past few decades. This review aims to summarize traditional Chinese medicine (TCM) suitability in the pathogenesis and clinical and preclinical management of DOP. Methods. Literature sources used were from Medline (Pubmed), CNKI (China Knowledge Resource Integrated Database), and CSTJ (China Science and Technology Journal Database) online databases. For the consultation, keywords such as diabetic osteoporosis (DOP), TCM, clinical study, animal experiment, toxicity, and research progress were used in various combinations. Around 100 research papers and reviews were visited. Results. Liver-spleen-kidney insufficiency may result in development of DOP. 18 clinical trials are identified to use TCM compound prescriptions for management of patients with DOP. TCM herbs and their active ingredients are effective in preventing the development of DOP in streptozotocin (STZ) and alloxan as well as STZ combined with ovariectomy insulted rats. Among them, most frequently used TCM herbs in clinical trials are Radix Astragali, Radix et Rhizoma Salviae Miltiorrhizae, Radix Rehmanniae Preparata, and Herba Epimedii. Some of TCM herbs also exhibit toxicities in clinical and preclinical research. Conclusions. TCM herbs may act as the novel sources of anti-DOP drugs by improving bone and glucolipid metabolisms. However, the pathogenesis of DOP and the material base of TCM herbs still merit further study.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas.

          The aim of the present study was the evaluation of possible protective effects of quercetin (QE) against beta-cell damage in experimental streptozotocin (STZ)-induced diabetes in rats. STZ was injected intraperitoneally at a single dose of 50 mg kg(-1) for diabetes induction. QE (15 mg kg(-1) day, intraperitoneal (i.p.) injection) was injected for 3 days prior to STZ administration; these injections were continued to the end of the study (for 4 weeks). It has been believed that oxidative stress plays a role in the pathogenesis of diabetes mellitus (DM). In order to determine the changes of cellular antioxidant defense system, antioxidant enzymes such as glutathione peroxidase (GSHPx), superoxide dismutase (SOD) and catalase (CAT) activities were measured in pancreatic homogenates. Moreover we also measured serum nitric oxide (NO) and erythrocyte and pancreatic tissue malondialdehyde (MDA) levels, a marker of lipid peroxidation, if there is an imbalance between oxidant and antioxidant status. Pancreatic beta-cells were examined by immunohistochemical methods. STZ induced a significant increase lipid peroxidation, serum NO concentrations and decreased the antioxidant enzyme activity. Erythrocyte MDA, serum NO and pancreatic tissue MDA significantly increased (P < 0.05) and also the antioxidant levels significantly decreased (P < 0.05) in diabetic group. QE treatment significantly decreased the elevated MDA and NO (P < 0.05), and also increased the antioxidant enzyme activities (P < 0.05). QE treatment has shown protective effect possibly through decreasing lipid peroxidation, NO production and increasing antioxidant enzyme activity. Islet cells degeneration and weak insulin immunohistochemical staining was observed in STZ induced diabetic rats. Increased staining of insulin and preservation of islet cells were apparent in the QE-treated diabetic rats. These findings suggest that QE treatment has protective effect in diabetes by decreasing oxidative stress and preservation of pancreatic beta-cell integrity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review

            The relevance of food composition for human health has increased consumers’ interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology.

              Salvia miltiorrhiza Bunge (SM) is a very popular medicinal plant that has been extensively applied for many years to treat various diseases, especially coronary heart diseases and cerebrovascular diseases, either alone or in combination with other Chinese plant-based medicines. Although a large number of studies on SM have been performed, they are scattered across a variety of publications. The present review is an up-to-date summary of the published scientific information about the traditional uses, chemical constituents, pharmacological effects, side effects, and drug interactions with SM, in order to lay the foundation for further investigations and better utilization of SM. SM contains diverse chemical components including diterpenoid quinones, hydrophilic phenolic acids, and essential oils. Many pharmacological studies have been done on SM during the last 30 years, focusing on the cardiovascular and cerebrovascular effects, and the antioxidative, neuroprotective, antifibrotic, anti-inflammatory, and antineoplastic activities. The research results strongly support the notion that SM has beneficial therapeutic properties and has a potential of being an effective adaptogenic remedy.
                Bookmark

                Author and article information

                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi Publishing Corporation
                1741-427X
                1741-4288
                2016
                6 September 2016
                6 September 2016
                : 2016
                : 3218313
                Affiliations
                1Preclinical Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
                2Chinese Materia Medica School, Beijing University of Chinese Medicine, Beijing 100029, China
                3Henan Luoyang Orthopedic Traumatological Hospital, Luoyang 471000, China
                4The Research Institute of McGill University Health Center, Montreal, QC, Canada H4A 3J1
                5Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China
                Author notes

                Academic Editor: Khalid Rahman

                Author information
                http://orcid.org/0000-0002-7793-1482
                Article
                10.1155/2016/3218313
                5028800
                27698674
                af03caaf-cc50-4c5f-b31a-076c487b20bb
                Copyright © 2016 Rufeng Ma et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 April 2016
                : 15 July 2016
                : 18 July 2016
                Funding
                Funded by: grants from National Natural Science Foundation of China
                Award ID: NSFC81274041
                Award ID: NSFC81273995
                Funded by: International Cooperation projects of MOE
                Award ID: 2011DFA30920
                Funded by: Key Drug Development Program of MOST
                Award ID: 20122X09103201-005
                Funded by: 111 project of MOE
                Award ID: B07007
                Categories
                Review Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article