21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Burden of enteric fever at three urban sites in Africa and Asia: a multicentre population-based study

      research-article
      , DPhil a , b , h , * , * , , MPH c , d , * , , MPhil e , * , , DPhil a , , MS f , , BSc a , , MSc b , g , , DPhil h , , DPhil c , d , , DPhil c , d , , PhD e , , DPhil i , , MD j , k , , PhD l , , DPhil i , , PhD m , n , , PhD o , , PhD e , , ScD f , , , FRCPE c , j , , , MD b , g , p , , , MD e , , , FMedSci a , , STRATAA Study Group
      The Lancet. Global Health
      Elsevier Ltd

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background

          Enteric fever is a serious public health concern in many low-income and middle-income countries. Numerous data gaps exist concerning the epidemiology of Salmonella enterica serotype Typhi ( S Typhi) and Salmonella enterica serotype Paratyphi ( S Paratyphi), which are the causative agents of enteric fever. We aimed to determine the burden of enteric fever in three urban sites in Africa and Asia.

          Methods

          In this multicentre population-based study, we did a demographic census at three urban sites in Africa (Blantyre, Malawi) and Asia (Kathmandu, Nepal and Dhaka, Bangladesh) between June 1, 2016, and Sept 25, 2018. Households were selected randomly from the demographic census. Participants from within the geographical census area presenting to study health-care facilities were approached for recruitment if they had a history of fever for 72 h or more (later changed to >48 h) or temperature of 38·0°C or higher. Facility-based passive surveillance was done between Nov 11, 2016, and Dec 31, 2018, with blood-culture collection for febrile illness. We also did a community-based serological survey to obtain data on Vi-antibody defined infections. We calculated crude incidence for blood-culture-confirmed S Typhi and S Paratyphi infection, and calculated adjusted incidence and seroincidence of S Typhi blood-culture-confirmed infection.

          Findings

          423 618 individuals were included in the demographic census, contributing 626 219 person-years of observation for febrile illness surveillance. 624 S Typhi and 108 S Paratyphi A isolates were collected from the blood of 12 082 febrile patients. Multidrug resistance was observed in 44% S Typhi isolates and fluoroquinolone resistance in 61% of S Typhi isolates. In Blantyre, the overall crude incidence of blood-culture confirmed S Typhi was 58 cases per 100 000 person-years of observation (95% CI 48–70); the adjusted incidence was 444 cases per 100 000 person-years of observation (95% credible interval [CrI] 347–717). The corresponding rates were 74 (95% CI 62–87) and 1062 (95% CrI 683–1839) in Kathmandu, and 161 (95% CI 145–179) and 1135 (95% CrI 898–1480) in Dhaka. S Paratyphi was not found in Blantyre; overall crude incidence of blood-culture-confirmed S Paratyphi A infection was 6 cases per 100 000 person-years of observation (95% CI 3–11) in Kathmandu and 42 (95% CI 34–52) in Dhaka. Seroconversion rates for S Typhi infection per 100 000 person-years estimated from anti-Vi seroconversion episodes in serological surveillance were 2505 episodes (95% CI 1605–3727) in Blantyre, 7631 (95% CI 5913–9691) in Kathmandu, and 3256 (95% CI 2432–4270) in Dhaka.

          Interpretation

          High disease incidence and rates of antimicrobial resistance were observed across three different transmission settings and thus necessitate multiple intervention strategies to achieve global control of these pathogens.

          Funding

          Wellcome Trust and the Bill & Melinda Gates Foundation.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Drug-resistant enteric fever worldwide, 1990 to 2018: a systematic review and meta-analysis

          Background Antimicrobial resistance (AMR) is an increasing threat to global health. There are > 14 million cases of enteric fever every year and > 135,000 deaths. The disease is primarily controlled by antimicrobial treatment, but this is becoming increasingly difficult due to AMR. Our objectives were to assess the prevalence and geographic distribution of AMR in Salmonella enterica serovars Typhi and Paratyphi A infections globally, to evaluate the extent of the problem, and to facilitate the creation of geospatial maps of AMR prevalence to help targeted public health intervention. Methods We performed a systematic review of the literature by searching seven databases for studies published between 1990 and 2018. We recategorised isolates to allow the analysis of fluoroquinolone resistance trends over the study period. The prevalence of multidrug resistance (MDR) and fluoroquinolone non-susceptibility (FQNS) in individual studies was illustrated by forest plots, and a random effects meta-analysis was performed, stratified by Global Burden of Disease (GBD) region and 5-year time period. Heterogeneity was assessed using the I 2 statistics. We present a descriptive analysis of ceftriaxone and azithromycin resistance. Findings We identified 4557 articles, of which 384, comprising 124,347 isolates (94,616 S. Typhi and 29,731 S. Paratyphi A) met the pre-specified inclusion criteria. The majority (276/384; 72%) of studies were from South Asia; 40 (10%) articles were identified from Sub-Saharan Africa. With the exception of MDR S. Typhi in South Asia, which declined between 1990 and 2018, and MDR S. Paratyphi A, which remained at low levels, resistance trends worsened for all antimicrobials in all regions. We identified several data gaps in Africa and the Middle East. Incomplete reporting of antimicrobial susceptibility testing (AST) and lack of quality assurance were identified. Interpretation Drug-resistant enteric fever is widespread in low- and middle-income countries, and the situation is worsening. It is essential that public health and clinical measures, which include improvements in water quality and sanitation, the deployment of S. Typhi vaccination, and an informed choice of treatment are implemented. However, there is no licenced vaccine for S. Paratyphi A. The standardised reporting of AST data and rollout of external quality control assessment are urgently needed to facilitate evidence-based policy and practice. Trial registration PROSPERO CRD42018029432.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017

            Summary Background Efforts to quantify the global burden of enteric fever are valuable for understanding the health lost and the large-scale spatial distribution of the disease. We present the estimates of typhoid and paratyphoid fever burden from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, and the approach taken to produce them. Methods For this systematic analysis we broke down the relative contributions of typhoid and paratyphoid fevers by country, year, and age, and analysed trends in incidence and mortality. We modelled the combined incidence of typhoid and paratyphoid fevers and split these total cases proportionally between typhoid and paratyphoid fevers using aetiological proportion models. We estimated deaths using vital registration data for countries with sufficiently high data completeness and using a natural history approach for other locations. We also estimated disability-adjusted life-years (DALYs) for typhoid and paratyphoid fevers. Findings Globally, 14·3 million (95% uncertainty interval [UI] 12·5–16·3) cases of typhoid and paratyphoid fevers occurred in 2017, a 44·6% (42·2–47·0) decline from 25·9 million (22·0–29·9) in 1990. Age-standardised incidence rates declined by 54·9% (53·4–56·5), from 439·2 (376·7–507·7) per 100 000 person-years in 1990, to 197·8 (172·0–226·2) per 100 000 person-years in 2017. In 2017, Salmonella enterica serotype Typhi caused 76·3% (71·8–80·5) of cases of enteric fever. We estimated a global case fatality of 0·95% (0·54–1·53) in 2017, with higher case fatality estimates among children and older adults, and among those living in lower-income countries. We therefore estimated 135·9 thousand (76·9–218·9) deaths from typhoid and paratyphoid fever globally in 2017, a 41·0% (33·6–48·3) decline from 230·5 thousand (131·2–372·6) in 1990. Overall, typhoid and paratyphoid fevers were responsible for 9·8 million (5·6–15·8) DALYs in 2017, down 43·0% (35·5–50·6) from 17·2 million (9·9–27·8) DALYs in 1990. Interpretation Despite notable progress, typhoid and paratyphoid fevers remain major causes of disability and death, with billions of people likely to be exposed to the pathogens. Although improvements in water and sanitation remain essential, increased vaccine use (including with typhoid conjugate vaccines that are effective in infants and young children and protective for longer periods) and improved data and surveillance to inform vaccine rollout are likely to drive the greatest improvements in the global burden of the disease. Funding Bill & Melinda Gates Foundation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Emergence of an Extensively Drug-Resistant Salmonella enterica Serovar Typhi Clone Harboring a Promiscuous Plasmid Encoding Resistance to Fluoroquinolones and Third-Generation Cephalosporins

              ABSTRACT Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S. Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S. Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the bla CTX-M-15 extended-spectrum β-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S. Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally.
                Bookmark

                Author and article information

                Contributors
                Journal
                Lancet Glob Health
                Lancet Glob Health
                The Lancet. Global Health
                Elsevier Ltd
                2214-109X
                16 November 2021
                December 2021
                16 November 2021
                : 9
                : 12
                : e1688-e1696
                Affiliations
                [a ]Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
                [b ]Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
                [c ]Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
                [d ]Patan Academy of Health Sciences, Patan Hospital, Lalitpur, Nepal
                [e ]International Centre for Diarrhoeal Diseases Research, Bangladesh, Dhaka, Bangladesh
                [f ]Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
                [g ]College of Medicine, University of Malawi, Blantyre, Malawi
                [h ]Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
                [i ]Department of Medicine, University of Cambridge, Cambridge, UK
                [j ]Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
                [k ]Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
                [l ]The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
                [m ]Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
                [n ]Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
                [o ]National Institute for Health Research Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK
                [p ]Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
                Author notes
                [* ]Correspondence to: Dr James E Meiring, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK j.meiring@ 123456sheffield.ac.uk
                [*]

                Contributed equally

                [†]

                Contributed equally

                Article
                S2214-109X(21)00370-3
                10.1016/S2214-109X(21)00370-3
                8609278
                34798028
                aa4ea58c-b096-4b8e-942a-24d76a4b7d8a
                © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                Categories
                Articles

                Comments

                Comment on this article