77
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hsp90 Governs Dispersion and Drug Resistance of Fungal Biofilms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections.

          Author Summary

          Candida albicans and A spergillus fumigatus are the most common causative agents of fungal infections worldwide. Both species can form biofilms on host tissues and indwelling medical devices that are highly resistant to antifungal treatment. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. Compromising Hsp90 function reduced biofilm formation of C. albicans in vitro and impaired dispersal of biofilm cells, potentially blocking their capacity to serve as reservoirs for infection. Further, compromise of Hsp90 function abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal, the azoles, both in vitro and in a mammalian model of catheter-associated candidiasis. Key drug resistance regulators were depleted upon reduction of Hsp90 levels in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 markedly reduced levels of matrix glucan, a carbohydrate important for C. albicans biofilm drug resistance. Inhibition of Hsp90 also reduced resistance of A. fumigatus biofilms to the newest class of antifungal, the echinocandins. Thus, targeting Hsp90 provides a promising strategy for the treatment of biofilm infections caused by diverse fungal species.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiology of invasive mycoses in North America.

          The incidence of invasive mycoses is increasing, especially among patients who are immunocompromised or hospitalized with serious underlying diseases. Such infections may be broken into two broad categories: opportunistic and endemic. The most important agents of the opportunistic mycoses are Candida spp., Cryptococcus neoformans, Pneumocystis jirovecii, and Aspergillus spp. (although the list of potential pathogens is ever expanding); while the most commonly encountered endemic mycoses are due to Histoplasma capsulatum, Coccidioides immitis/posadasii, and Blastomyces dermatitidis. This review discusses the epidemiologic profiles of these invasive mycoses in North America, as well as risk factors for infection, and the pathogens' antifungal susceptibility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aspergillosis case-fatality rate: systematic review of the literature.

            To update the case-fatality rate (CFR) associated with invasive aspergillosis according to underlying conditions, site of infection, and antifungal therapy, data were systematically reviewed and pooled from clinical trials, cohort or case-control studies, and case series of >/=10 patients with definite or probable aspergillosis. Subjects were 1941 patients described in studies published after 1995 that provided sufficient outcome data; cases included were identified by MEDLINE and EMBASE searches. The main outcome measure was the CFR. Fifty of 222 studies met the inclusion criteria. The overall CFR was 58%, and the CFR was highest for bone marrow transplant recipients (86.7%) and for patients with central nervous system or disseminated aspergillosis (88.1%). Amphotericin B deoxycholate and lipid formulations of amphotericin B failed to prevent death in one-half to two-thirds of patients. Mortality is high despite improvements in diagnosis and despite the advent of newer formulations of amphotericin B. Underlying patient conditions and the site of infection remain important prognostic factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic control of Candida albicans biofilm development.

              Candida species cause frequent infections owing to their ability to form biofilms - surface-associated microbial communities - primarily on implanted medical devices. Increasingly, mechanistic studies have identified the gene products that participate directly in the development of Candida albicans biofilms, as well as the regulatory circuitry and networks that control their expression and activity. These studies have uncovered new mechanisms and signals that govern C. albicans biofilm development and associated drug resistance, thus providing biological insight and therapeutic foresight.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                September 2011
                September 2011
                8 September 2011
                : 7
                : 9
                : e1002257
                Affiliations
                [1 ]Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
                [2 ]Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, Texas, United States of America
                [3 ]Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
                [4 ]College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
                University of Birmingham, United Kingdom
                Author notes

                Conceived and designed the experiments: NR PU GR DA LEC. Performed the experiments: NR PU JN RR. Analyzed the data: NR PU. Contributed reagents/materials/analysis tools: NR LEC JLLR. Wrote the paper: NR LEC.

                Article
                PPATHOGENS-D-11-00508
                10.1371/journal.ppat.1002257
                3169563
                21931556
                a99d8e86-2e7c-4df8-bdea-5b1d7ef2d230
                Robbins et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 March 2011
                : 27 July 2011
                Page count
                Pages: 18
                Categories
                Research Article
                Biology
                Microbiology
                Medicine
                Infectious Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article