1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The NEWgenerator TM non-sewered sanitation system: Long-term field testing at an informal settlement community in eThekwini municipality, South Africa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Globally, there is a dire need for a new class of advanced non-sewered sanitation systems (NSSS) to provide onsite wastewater treatment that is capable of meeting stringent discharge or reuse criteria. These systems need to be simple to operate and maintain, reliable, and resilient to unreliable electrical service. The NEWgenerator (NG) is a compact, automated, solar-powered wastewater treatment system comprised of three major treatment processes: anaerobic membrane bioreactor (AnMBR), nutrient capture system (NCS) with ion exchange and carbon sorption, and electrochlorination (EC). The NG system operated at an informal settlement community in South Africa over a 534 d period, treating high-strength blackwater (BW) and yellow water (YW) from a public toilet facility. Over three test stages (BW, BW + YW, BW) that included several periods of dormancy, the NG system was able to provide a high level of removal of total suspended solids (97.6 ± 3.1%), chemical oxygen demand (94.5 ± 5.0%), turbidity (96.3 ± 9.7%), color (92.0 ± 10.5%), total nitrogen (82.1 ± 24.0%), total phosphorus (43.0 ± 22.1%), E. coli (7.4 ± 1.5 LRV, not detected in effluent), and helminth ova (not detected in effluent). The treatment levels met most of the ISO 30500 NSSS standard for liquid effluent and local water reuse criteria. A series of maintenance events were successfully conducted onsite over the 534 d field trial: two membrane cleanings, two NCS regenerations, and granular activated carbon replacement. Desludging, a major pain point for onsite sanitation systems, was unnecessary during the field trial and thereby not performed. The AnMBR performed well, removing 94.5 ± 5.0% of the influent COD across all three stages. The high COD removal rate is attributed to the sub-micron separation provided by the ultrafiltration membrane. The NCS was highly efficient at removing total nitrogen, residual COD and color, but the regeneration process was lengthy and is a topic of ongoing research. The EC provided effective disinfection, but frequent prolonged run cycles due to power supply and water quality issues upstream limited the overall system hydraulic throughput. This extended field trial under actual ambient conditions successfully demonstrated the feasibility of using advanced NSSS to address the global water and sanitation crises.

          Graphical abstract

          Highlights

          • A solar-powered onsite sanitation system was field tested in South Africa.

          • The unit treated black- and yellow-water at an informal settlement for 534 d.

          • Anaerobic membrane bioreactor and nutrient capture system managed carbon and nitrogen.

          • Electrochlorination provided disinfection and polishing of effluent.

          • ISO 30500 certification readiness and field maintenance requirements were assessed.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Decentralized approaches to wastewater treatment and management: applicability in developing countries.

          Providing reliable and affordable wastewater treatment in rural areas is a challenge in many parts of the world, particularly in developing countries. The problems and limitations of the centralized approaches for wastewater treatment are progressively surfacing. Centralized wastewater collection and treatment systems are costly to build and operate, especially in areas with low population densities and dispersed households. Developing countries lack both the funding to construct centralized facilities and the technical expertise to manage and operate them. Alternatively, the decentralized approach for wastewater treatment which employs a combination of onsite and/or cluster systems is gaining more attention. Such an approach allows for flexibility in management, and simple as well as complex technologies are available. The decentralized system is not only a long-term solution for small communities but is more reliable and cost effective. This paper presents a review of the various decentralized approaches to wastewater treatment and management. A discussion as to their applicability in developing countries, primarily in rural areas, and challenges faced is emphasized all through the paper. While there are many impediments and challenges towards wastewater management in developing countries, these can be overcome by suitable planning and policy implementation. Understanding the receiving environment is crucial for technology selection and should be accomplished by conducting a comprehensive site evaluation process. Centralized management of the decentralized wastewater treatment systems is essential to ensure they are inspected and maintained regularly. Management strategies should be site specific accounting for social, cultural, environmental and economic conditions in the target area.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Pit Latrines and Their Impacts on Groundwater Quality: A Systematic Review

            Background: Pit latrines are one of the most common human excreta disposal systems in low-income countries, and their use is on the rise as countries aim to meet the sanitation-related target of the Millennium Development Goals. There is concern, however, that discharges of chemical and microbial contaminants from pit latrines to groundwater may negatively affect human health. Objectives: Our goals were to a) calculate global pit latrine coverage, b) systematically review empirical studies of the impacts of pit latrines on groundwater quality, c) evaluate latrine siting standards, and d) identify knowledge gaps regarding the potential for and consequences of groundwater contamination by latrines. Methods: We used existing survey and population data to calculate global pit latrine coverage. We reviewed the scientific literature on the occurrence of contaminants originating from pit latrines and considered the factors affecting transport of these contaminants. Data were extracted from peer-reviewed articles, books, and reports identified using Web of ScienceSM, PubMed, Google, and document reference lists. Discussion: We estimated that approximately 1.77 billion people use pit latrines as their primary means of sanitation. Studies of pit latrines and groundwater are limited and have generally focused on only a few indicator contaminants. Although groundwater contamination is frequently observed downstream of latrines, contaminant transport distances, recommendations based on empirical studies, and siting guidelines are variable and not well aligned with one another. Conclusions: In order to improve environmental and human health, future research should examine a larger set of contextual variables, improve measurement approaches, and develop better criteria for siting pit latrines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters.

              This review presents a comprehensive summary on applications of anaerobic membrane bioreactor (AnMBR) technology for industrial wastewaters in view of different aspects including treatability and filterability. AnMBRs present an attractive option for the treatment of industrial wastewaters at extreme conditions, such as high salinity, high temperature, high suspended solids concentrations, and toxicity that hamper granulation and retention of biomass or reduce the biological activity. So far, most of the research has been conducted at laboratory scale; however, also a number of full-scale AnMBR systems is currently being operated worldwide. Membrane fouling, a multivariable process, is still a research quest that requires further investigation. In fact, membrane fouling and flux decline present the most important reasons that hamper the wide-spread application of full-scale reactors. This paper addresses a detailed assessment and discussion on treatability and filterability of industrial wastewaters in both lab- and full-scale AnMBR applications, the encountered problems and future opportunities.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Environ Manage
                J Environ Manage
                Journal of Environmental Management
                Academic Press
                0301-4797
                1095-8630
                15 October 2021
                15 October 2021
                : 296
                : 112921
                Affiliations
                [a ]Membrane Biotechnology Lab, University of South Florida, Tampa, FL, USA
                [b ]WASH R&D Centre (formerly Pollution Research Group), University of KwaZulu-Natal, Durban, South Africa
                [c ]Khanyisa Projects, Durban, South Africa
                Author notes
                []Corresponding author. dhyeh@ 123456usf.edu
                Article
                S0301-4797(21)00983-X 112921
                10.1016/j.jenvman.2021.112921
                8404038
                34303262
                a99c4888-d18a-4d39-8d2c-f282e6f3a460
                © 2021 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 September 2020
                : 5 May 2021
                : 7 May 2021
                Categories
                Research Article

                Environmental management, Policy & Planning
                anaerobic membrane bioreactor,off-grid,decentralized,onsite wastewater treatment,reinvented toilet,murt,iso 30500

                Comments

                Comment on this article