9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Facile, environmentally benign and scalable approach to produce pristine few layers graphene suitable for preparing biocompatible polymer nanocomposites

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The success of developing graphene based biomaterials depends on its ease of synthesis, use of environmentally benign methods and low toxicity of the chemicals involved as well as biocompatibility of the final products/devices. We report, herein, a simple, scalable and safe method to produce defect free few layers graphene using naturally available phenolics i.e. curcumin/tetrahydrocurcumin/quercetin, as solid-phase exfoliating agents with a productivity of ∼45 g/batch (D/G ≤ 0.54 and D/D′ ≤ 1.23). The production method can also be employed in liquid-phase using a ball mill (20 g/batch, D/G ≤ 0.23 and D/D′ ≤ 1.12) and a sand grinder (10 g/batch, D/G ≤ 0.11 and D/D∼ ≤ 0.78). The combined effect of π-π interaction and charge transfer (from curcumin to graphene) is postulated to be the driving force for efficient exfoliation of graphite. The yielded graphene was mixed with the natural rubber (NR) latex to produce thin film nanocomposites, which show superior tensile strength with low modulus and no loss of % elongation at break. In-vitro and in-vivo investigations demonstrate that the prepared nanocomposite is biocompatible. This approach could be useful for the production of materials suitable in products (gloves/condoms/catheters), which come in contact with body parts/body fluids.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The rise of graphene

          Graphene is a rapidly rising star on the horizon of materials science and condensed matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed matter physics, where quantum relativistic phenomena, some of which are unobservable in high energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Raman Fingerprint of Graphene

            Graphene is the two-dimensional (2d) building block for carbon allotropes of every other dimensionality. It can be stacked into 3d graphite, rolled into 1d nanotubes, or wrapped into 0d fullerenes. Its recent discovery in free state has finally provided the possibility to study experimentally its electronic and phonon properties. Here we show that graphene's electronic structure is uniquely captured in its Raman spectrum that clearly evolves with increasing number of layers. Raman fingerprints for single-, bi- and few-layer graphene reflect changes in the electronic structure and electron-phonon interactions and allow unambiguous, high-throughput, non-destructive identification of graphene layers, which is critically lacking in this emerging research area.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene

              We show that the optical transparency of suspended graphene is defined by the fine structure constant, alpha, the parameter that describes coupling between light and relativistic electrons and is traditionally associated with quantum electrodynamics rather than condensed matter physics. Despite being only one atom thick, graphene is found to absorb a significant (pi times alpha=2.3%) fraction of incident white light, which is a consequence of graphene's unique electronic structure. This value translates into universal dynamic conductivity G =e^2/4h_bar within a few percent accuracy.
                Bookmark

                Author and article information

                Contributors
                laks77@gmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                25 July 2018
                25 July 2018
                2018
                : 8
                : 11228
                Affiliations
                [1 ]Corporate R&D Center, HLL Lifecare Limited, Akkulam, Sreekariam (P.O), Trivandrum, 695017 India
                [2 ]CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate (P.O), Pappanamcode, Trivandrum, 695019 India
                [3 ]Polymers and Advanced Materials Laboratory, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 India
                Author information
                http://orcid.org/0000-0002-1059-6122
                Article
                28560
                10.1038/s41598-018-28560-1
                6060110
                30046158
                a566d99f-9900-4db0-b116-d0670817f27b
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 January 2018
                : 8 May 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000865, Bill and Melinda Gates Foundation;
                Award ID: OPP1098333
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article