8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cytotoxicity of Formulated Graphene and Its Natural Rubber Nanocomposite Thin Film in Human Vaginal Epithelial Cells: An Influence of Noncovalent Interaction

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Graphene family materials (GFMs) are extensively explored for various biomedical applications due to their unique physical properties. The prime challenge is to establish a conclusive safety profile of these nanomaterials and their respective products or devices. Formulating GFMs with appropriate ingredients (e.g., surfactant/compatibilizer) will help to disperse them homogeneously (i.e., within the polymer matrix in the case of polymer–graphene nanocomposites) and aid in good interfacial interaction to achieve the desired properties. However, no cytotoxicity report is available on the effects of the additives on graphene and its incorporated materials. Here, we report in vitro cytotoxicity of formulated FLG (FLG-C), i.e., a mixture of FLG, melamine, and sodium poly(naphthalene sulfonate) (SPS), along with natural rubber (NR) latex and FLG-C-included NR latex nanocomposite (FLG-C-NR) thin films on human vaginal epithelial (HVE) cells. FLG-C shows reduced cellular proliferation (∼55%) only at a longer exposure time (72 h) even at a low concentration (50 μg/mL). It also displays significant down- and upregulation in mitochondrial membrane potential (MMP) and reactive oxygen species (ROS), respectively, whereas no changes are observed in lactate dehydrogenase (LDH), propidium iodide (PI), uptake, and cell cycle analysis at 48 h. In vitro experiments on NR latex and FLG-C-NR latex thin films demonstrate that the incorporation of FLG-C does not compromise the biocompatibility of the NR latex. Further substantiation from the in vivo experiments on the thin films recommends that FLG-C could be suitable to prepare a range of biocompatible rubber latex nanocomposites-based products, viz., next-generation condoms (male and female), surgical gloves, catheters, vaginal rings, bladder–rectum spacer balloon, etc.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          PEGylated nanographene oxide for delivery of water-insoluble cancer drugs.

          It is known that many potent, often aromatic drugs are water insoluble, which has hampered their use for disease treatment. In this work, we functionalized nanographene oxide (NGO), a novel graphitic material, with branched polyethylene glycol (PEG) to obtain a biocompatible NGO-PEG conjugate stable in various biological solutions, and used them for attaching hydrophobic aromatic molecules including a camptothecin (CPT) analogue, SN38, noncovalently via pi-pi stacking. The resulting NGO-PEG-SN38 complex exhibited excellent water solubility while maintaining its high cancer cell killing potency similar to that of the free SN38 molecules in organic solvents. The efficacy of NGO-PEG-SN38 was far higher than that of irinotecan (CPT-11), a FDA-approved water soluble SN38 prodrug used for the treatment of colon cancer. Our results showed that graphene is a novel class of material promising for biological applications including future in vivo cancer treatment with various aromatic, low-solubility drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts.

            Two-dimensional carbon-based nanomaterials, including graphene oxide and graphene, are potential candidates for biomedical applications such as sensors, cell labeling, bacterial inhibition, and drug delivery. Herein, we explore the biocompatibility of graphene-related materials with controlled physical and chemical properties. The size and extent of exfoliation of graphene oxide sheets was varied by sonication intensity and time. Graphene sheets were obtained from graphene oxide by a simple (hydrazine-free) hydrothermal route. The particle size, morphology, exfoliation extent, oxygen content, and surface charge of graphene oxide and graphene were characterized by wide-angle powder X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, dynamic light scattering, and zeta-potential. One method of toxicity assessment was based on measurement of the efflux of hemoglobin from suspended red blood cells. At the smallest size, graphene oxide showed the greatest hemolytic activity, whereas aggregated graphene sheets exhibited the lowest hemolytic activity. Coating graphene oxide with chitosan nearly eliminated hemolytic activity. Together, these results demonstrate that particle size, particulate state, and oxygen content/surface charge of graphene have a strong impact on biological/toxicological responses to red blood cells. In addition, the cytotoxicity of graphene oxide and graphene sheets was investigated by measuring mitochondrial activity in adherent human skin fibroblasts using two assays. The methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, a typical nanotoxicity assay, fails to predict the toxicity of graphene oxide and graphene toxicity because of the spontaneous reduction of MTT by graphene and graphene oxide, resulting in a false positive signal. However, appropriate alternate assessments, using the water-soluble tetrazolium salt (WST-8), trypan blue exclusion, and reactive oxygen species assay reveal that the compacted graphene sheets are more damaging to mammalian fibroblasts than the less densely packed graphene oxide. Clearly, the toxicity of graphene and graphene oxide depends on the exposure environment (i.e., whether or not aggregation occurs) and mode of interaction with cells (i.e., suspension versus adherent cell types).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells

              Neural stem cell (NSC) based therapy provides a promising approach for neural regeneration. For the success of NSC clinical application, a scaffold is required to provide three-dimensional (3D) cell growth microenvironments and appropriate synergistic cell guidance cues. Here, we report the first utilization of graphene foam, a 3D porous structure, as a novel scaffold for NSCs in vitro. It was found that three-dimensional graphene foams (3D-GFs) can not only support NSC growth, but also keep cell at an active proliferation state with upregulation of Ki67 expression than that of two-dimensional graphene films. Meanwhile, phenotypic analysis indicated that 3D-GFs can enhance the NSC differentiation towards astrocytes and especially neurons. Furthermore, a good electrical coupling of 3D-GFs with differentiated NSCs for efficient electrical stimulation was observed. Our findings implicate 3D-GFs could offer a powerful platform for NSC research, neural tissue engineering and neural prostheses.
                Bookmark

                Author and article information

                Journal
                ACS Biomater Sci Eng
                ACS Biomater Sci Eng
                ab
                abseba
                ACS Biomaterials Science & Engineering
                American Chemical Society
                2373-9878
                20 February 2020
                13 April 2020
                : 6
                : 4
                : 2007-2019
                Affiliations
                [1]Corporate R&D Center, HLL Lifecare Limited , Akkulam PO, Sreekaryam, Thiruvananthapuram 695017, India
                Author notes
                Article
                10.1021/acsbiomaterials.9b01897
                7157971
                2ce25f29-306f-41a1-9159-dd856a7192dd
                Copyright © 2020 American Chemical Society

                This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

                History
                : 12 December 2019
                : 18 February 2020
                Categories
                Article
                Custom metadata
                ab9b01897
                ab9b01897

                formulated pristine few-layer graphene,graphene−natural rubber latex nanocomposites,cytotoxicity,human vaginal epithelial cells,biocompatibility

                Comments

                Comment on this article