33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lensfree Fluorescent On-Chip Imaging of Transgenic Caenorhabditis elegans Over an Ultra-Wide Field-of-View

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We demonstrate lensfree on-chip fluorescent imaging of transgenic Caenorhabditis elegans ( C. elegans) over an ultra-wide field-of-view (FOV) of e.g., >2–8 cm 2 with a spatial resolution of ∼10µm. This is the first time that a lensfree on-chip platform has successfully imaged fluorescent C. elegans samples. In our wide-field lensfree imaging platform, the transgenic samples are excited using a prism interface from the side, where the pump light is rejected through total internal reflection occurring at the bottom facet of the substrate. The emitted fluorescent signal from C. elegans samples is then recorded on a large area opto-electronic sensor-array over an FOV of e.g., >2–8 cm 2, without the use of any lenses, thin-film interference filters or mechanical scanners. Because fluorescent emission rapidly diverges, such lensfree fluorescent images recorded on a chip look blurred due to broad point-spread-function of our platform. To combat this resolution challenge, we use a compressive sampling algorithm to uniquely decode the recorded lensfree fluorescent patterns into higher resolution images, demonstrating ∼10 µm resolution. We tested the efficacy of this compressive decoding approach with different types of opto-electronic sensors to achieve a similar resolution level, independent of the imaging chip. We further demonstrate that this wide FOV lensfree fluorescent imaging platform can also perform sequential bright-field imaging of the same samples using partially-coherent lensfree digital in-line holography that is coupled from the top facet of the same prism used in fluorescent excitation. This unique combination permits ultra-wide field dual-mode imaging of C. elegans on a chip which could especially provide a useful tool for high-throughput screening applications in biomedical research.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways.

          Most heritable traits, including disease susceptibility, are affected by interactions between multiple genes. However, we understand little about how genes interact because very few possible genetic interactions have been explored experimentally. We have used RNA interference in Caenorhabditis elegans to systematically test approximately 65,000 pairs of genes for their ability to interact genetically. We identify approximately 350 genetic interactions between genes functioning in signaling pathways that are mutated in human diseases, including components of the EGF/Ras, Notch and Wnt pathways. Most notably, we identify a class of highly connected 'hub' genes: inactivation of these genes can enhance the phenotypic consequences of mutation of many different genes. These hub genes all encode chromatin regulators, and their activity as genetic hubs seems to be conserved across animals. We propose that these genes function as general buffers of genetic variation and that these hub genes may act as modifier genes in multiple, mechanistically unrelated genetic diseases in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurosurgery: functional regeneration after laser axotomy.

            Understanding how nerves regenerate is an important step towards developing treatments for human neurological disease, but investigation has so far been limited to complex organisms (mouse and zebrafish) in the absence of precision techniques for severing axons (axotomy). Here we use femtosecond laser surgery for axotomy in the roundworm Caenorhabditis elegans and show that these axons functionally regenerate after the operation. Application of this precise surgical technique should enable nerve regeneration to be studied in vivo in its most evolutionarily simple form.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications.

              Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing approximately 46 grams with dimensions smaller than 4.2 cm x 4.2 cm x 5.8 cm that achieves sub-cellular resolution over a large field of view of approximately 24 mm(2). This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                6 January 2011
                : 6
                : 1
                : e15955
                Affiliations
                [1 ]Electrical Engineering Department, University of California Los Angeles, Los Angeles, California, United States of America
                [2 ]California NanoSystems Institute (CNSI), Los Angeles, California, United States of America
                Massachusetts General Hospital, United States of America
                Author notes

                Conceived and designed the experiments: AFC IS TWS AO. Performed the experiments: AFC. Analyzed the data: AFC IS TWS AO. Contributed reagents/materials/analysis tools: AFC IS TWS AO. Wrote the paper: AFC IS TWS AO.

                Article
                PONE-D-10-02824
                10.1371/journal.pone.0015955
                3017097
                21253611
                9dee34eb-e01d-4f8f-9d40-4403a7683007
                Coskun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 30 September 2010
                : 30 November 2010
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Biotechnology
                Bioengineering
                Biomedical Engineering
                Model Organisms
                Animal Models
                Caenorhabditis Elegans
                Computer Science
                Algorithms
                Engineering
                Bioengineering
                Medical Devices
                Electrical Engineering
                Signal Processing
                Image Processing
                Physics
                Electromagnetic Radiation
                Visible Light

                Uncategorized
                Uncategorized

                Comments

                Comment on this article