3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fecundity–Body Size Relationship and Other Reproductive Aspects of <I>Streblote panda</I> (Lepidoptera: Lasiocampidae)

      ,
      Annals of the Entomological Society of America
      Entomological Society of America

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: not found
          • Article: not found

          Capital and Income Breeding as Alternative Tactics of Resource Use in Reproduction

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolutionary ecology of progeny size in arthropods.

            Most models of optimal progeny size assume that there is a trade-off between progeny size and number, and that progeny fitness increases with increasing investment per young. We find that both assumptions are supported by empirical studies but that the trade-off is less apparent when organisms are iteroparous, use adult-acquired resources for reproduction, or provide parental care. We then review patterns of variation in progeny size among species, among populations within species, among individuals within populations, and among progeny produced by a single female. We argue that much of the variation in progeny size among species, and among populations within species, is likely due to variation in natural selection. However, few studies have manipulated progeny environments and demonstrated that the relationship between progeny size and fitness actually differs among environments, and fewer still have demonstrated why selection favors different sized progeny in different environments. We argue that much of the variation in progeny size among females within populations, and among progeny produced by a single female, is probably nonadaptive. However, some species of arthropods exhibit plasticity in progeny size in response to several environmental factors, and much of this plasticity is likely adaptive. We conclude that advances in theory have substantially outpaced empirical data. We hope that this review will stimulate researchers to examine the specific factors that result in variation in selection on progeny size within and among populations, and how this variation in selection influences the evolution of the patterns we observe.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of nourishment in oogenesis.

              Oogenesis in insects is typically a nutrient-limited process, triggered only if sufficient nourishment is available. This nourishment can be acquired during the larval or adult stage, depending on the insect. Timing of food intake will have major effects on mechanisms of hormonal control. When nourishment for eggs is taken primarily by adults, insufficient nutrition inhibits egg development through mechanisms such as inhibition of corpora allata, as seen in Orthoptera and Blattaria. In adult Diptera, lack of protein inhibits release of brain factors that produce reproductive competency or ovarian stimulation. Lepidoptera have been characterized as lacking substantial regulation of oogenesis because egg development is underway at emergence. Many species for which ecological data are available do not mobilize reserves carried over from the larval stage until they feed as adults. The endocrine mechanisms underlying these systems are poorly understood. In many insects, mating and activity can affect nutritional state and therefore oogenesis. Mating can stimulate oogenesis through mobilization of reserves or through nutritional contributions by males to females. Activity, especially flight, and oogenesis can compete for energy. The flight apparatus, especially the muscle, can also compete with oogenesis for protein. Social insects exhibit extreme specializations in oogenesis; females range in fertility from completely sterile to hyperfecund. Food flow within colonies is a major factor regulating fecundity. Finally, maternal nourishment is not needed for oogenesis in parasitoids and pseudoplacental viviparous insects, which produce eggs with little or no yolk. Virtually nothing is known about the endocrine regulation of oogenesis on these insects.
                Bookmark

                Author and article information

                Journal
                Annals of the Entomological Society of America
                an
                Entomological Society of America
                00138746
                00138746
                March 01 2005
                March 01 2005
                : 98
                : 2
                : 191-196
                Article
                10.1603/0013-8746(2005)098[0191:FSRAOR]2.0.CO;2
                9a828c35-b209-4e74-9347-bc0fc539fd7f
                © 2005
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content3,341

                Cited by19

                Most referenced authors106