5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Performance of Aerosol Boxes for Endotracheal Intubation during the COVID-19 Pandemic with Systematic Review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction:

          In the backdrop of the COVID-19 pandemic, endotracheal intubation using an aerosol box (AB) became the norm in the emergency department (ED) and the intensive care unit. We compared two models of AB with different dimensions to compare and identify a device that helps in reducing viral exposure without compromising successful airway management.

          Methods:

          We conducted this prospective observational study for 7 months (October 20-April 21) on 143 patients presenting with an acute airway compromise to the ED. All intubations were performed using one of the two models available. The primary outcome was time taken for intubation (TTI).

          Results:

          The overall median time taken to intubate using any AB was 63 (interquartile range [IQR]: 46.2-87.7) s with an 81.9% first-pass success (FPS) rate. TTI for AB I was 67 (IQR: 53-106) s with a 76.3% FPS rate, while TTI for AB II was 57 (IQR: 44-75) s with an 85.9% FPS rate. TTI was much shorter without the use of an AB (34: IQR: 24-53 s) with a 92% FPS rate. Intubations done by emergency physicians with more than 2 years of experience were faster in both with or without AB when compared to intubations done by physicians with <2 years of experience.

          Conclusion:

          The use of an AB is associated with a longer TTI when compared to intubations done without an AB. TTI was relatively shorter when more experienced emergency physicians performed intubation. FPS rates were low with intubations done using AB.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Transmission of COVID-19 to Health Care Personnel During Exposures to a Hospitalized Patient — Solano County, California, February 2020

          On February 26, 2020, the first U.S. case of community-acquired coronavirus disease 2019 (COVID-19) was confirmed in a patient hospitalized in Solano County, California ( 1 ). The patient was initially evaluated at hospital A on February 15; at that time, COVID-19 was not suspected, as the patient denied travel or contact with symptomatic persons. During a 4-day hospitalization, the patient was managed with standard precautions and underwent multiple aerosol-generating procedures (AGPs), including nebulizer treatments, bilevel positive airway pressure (BiPAP) ventilation, endotracheal intubation, and bronchoscopy. Several days after the patient’s transfer to hospital B, a real-time reverse transcription–polymerase chain reaction (real-time RT-PCR) test for SARS-CoV-2 returned positive. Among 121 hospital A health care personnel (HCP) who were exposed to the patient, 43 (35.5%) developed symptoms during the 14 days after exposure and were tested for SARS-CoV-2; three had positive test results and were among the first known cases of probable occupational transmission of SARS-CoV-2 to HCP in the United States. Little is known about specific risk factors for SARS-CoV-2 transmission in health care settings. To better characterize and compare exposures among HCP who did and did not develop COVID-19, standardized interviews were conducted with 37 hospital A HCP who were tested for SARS-CoV-2, including the three who had positive test results. Performing physical examinations and exposure to the patient during nebulizer treatments were more common among HCP with laboratory-confirmed COVID-19 than among those without COVID-19; HCP with COVID-19 also had exposures of longer duration to the patient. Because transmission-based precautions were not in use, no HCP wore personal protective equipment (PPE) recommended for COVID-19 patient care during contact with the index patient. Health care facilities should emphasize early recognition and isolation of patients with possible COVID-19 and use of recommended PPE to minimize unprotected, high-risk HCP exposures and protect the health care workforce. HCP with potential exposures to the index patient at hospital A were identified through medical record review. Hospital and health department staff members contacted HCP for initial risk stratification and classified HCP into categories of high, medium, low, and no identifiable risk, according to CDC guidance.* HCP at high or medium risk were furloughed and actively monitored; those at low risk were asked to self-monitor for symptoms for 14 days from their last exposure. † Nasopharyngeal and oropharyngeal specimens were collected once from HCP who developed symptoms consistent with COVID-19 § during their 14-day monitoring period, and specimens were tested for SARS-CoV-2 using real-time RT-PCR at the California Department of Public Health. Serologic testing and testing for other respiratory viruses was not performed. The investigation team, including hospital, local and state health departments, and CDC staff members, attempted to contact all 43 tested HCP by phone to conducted interviews regarding index patient exposures using a standardized exposure assessment tool. Two-sided p-values were calculated using Fisher’s exact test for categorical variables and Wilcoxon rank-sum test for continuous variables; p-values 60 1/3 (33) 3/34 (9) Median (IQR) total estimated time in patient room, mins 120 (120–420) 25 (10–50) 0.06 Median (IQR) total estimated time in patient room during AGPs, mins¶ 95 (0–160) 0 (0–3) 0.13 Came within 6 ft of index patient 3/3 (100) 30/34 (91) 1.00 Reported direct skin-to-skin contact with index patient 0/3 (0) 8/34 (24) 1.00 Index patient either masked or on closed-system ventilator when contact occurred Always 0/3 (0) 7/34 (23) 0.58 Sometimes 2/3 (67) 10/34 (32) Never 1/3 (33) 14/34 (45) Abbreviations: AGPs = aerosol-generating procedures; COVID-19 = coronavirus disease 2019; IQR = interquartile range. * Versus sometimes or never. † No HCP reported use of gowns, N95 respirators, powered air-purifying respirators (PAPRs), or eye protection during any patient care activities for index patient. § Denominators for PPE use during AGPs are numbers of HCP exposed to AGPs. ¶ This was estimated by asking each interviewed staff member to report the number and average duration of each exposure to the patient during AGPs. Total estimated duration for each AGP was calculated by multiplying the number of exposures by average duration of exposure during that AGP. Total estimated exposure time for all AGPs was calculated by adding total duration of exposures across all AGPs. Discussion HCP are at high risk for acquiring infections during novel disease outbreaks, especially before transmission dynamics are fully characterized. The cases reported here are among the first known reports of occupational transmission of SARS-CoV-2 to HCP in the United States, although more cases have since been identified ( 2 ). Little is known to date about SARS-CoV-2 transmission in health care settings. Reports from Illinois, Singapore, and Hong Kong have described cohorts of HCP exposed to patients with COVID-19 without any documented HCP transmission ( 3 – 5 ); most HCP exposures in these cases occurred with patients while HCP were using contact, droplet, or airborne precautions. §§ As community transmission of COVID-19 increases, determining whether HCP infections are acquired in the workplace or in the community becomes more difficult. This investigation presented a unique opportunity to analyze exposures associated with COVID-19 transmission in a health care setting without recognized community exposures. Describing exposures among HCP who did and did not develop COVID-19 can inform guidance on how to best protect HCP. Among a cohort of 121 exposed HCP, 43 of whom were symptomatic and tested, three developed confirmed COVID-19, despite multiple unprotected exposures among HCP. HCP who developed COVID-19 had longer durations of exposure to the index patient; exposures during nebulizer treatments and BiPAP were also more common among HCP who developed COVID-19. These findings underscore the heightened COVID-19 transmission risk associated with prolonged, unprotected patient contact and the importance of ensuring that HCP exposed to patients with confirmed or suspected COVID-19 are protected. CDC recommends use of N95 or higher-level respirators and airborne infection isolation rooms when performing AGPs for patients with suspected or confirmed COVID-19; for care that does not include AGPs, CDC recommends use of respirators where available. ¶¶ In California, the Division of Occupational Safety and Health Aerosol Transmissible Diseases standard requires respirators for HCP exposed to potentially airborne pathogens such as SARS-CoV-2; PAPRs are required during AGPs.*** Studies of other respiratory pathogens have documented increased transmission risk associated with AGPs, many of which can generate large droplets as well as small particle aerosols ( 6 ). A recent study found that SARS-CoV-2 generated through nebulization can remain viable in aerosols <5 μm for hours, suggesting that SARS-CoV-2 could be transmitted at least in part through small particle aerosols ( 7 ). Among the three HCP with COVID-19 at hospital A, two had index patient exposures during AGPs; one did not and reported wearing a facemask but no eye protection for most of the contact time with the patient. Given multiple unprotected exposures among HCP in this investigation, separating risks associated with specific procedures from those associated with duration of exposure and lack of recommended PPE is difficult. More research to determine the risks associated with specific procedures and the protectiveness of different types of PPE, as well as the extent of short-range aerosol transmission of SARS-CoV-2, is needed. Patient source control (e.g., patient wearing a mask or connected to a closed-system ventilator during HCP exposures) might also reduce risk of SARS-CoV-2 transmission. Although the index patient was not masked or ventilated for the majority of hospital A admission, at hospital B, where the patient remained on a closed system ventilator from arrival to receiving a positive test result, none of the 146 HCP identified as exposed developed known COVID-19 infection ( 8 ). Source control strategies, such as masking of patients, visitors, and HCP, should be considered by health care facilities to reduce risk of SARS-CoV-2 transmission. This findings in this report are subject to at least three limitations. First, exposures among HCP were self-reported and are subject to recall bias. Second, the low number of cases limits the ability to detect statistically significant differences in exposures and does not allow for multivariable analyses to adjust for potential confounding. Finally, additional infections might have occurred among asymptomatic exposed HCP who were not tested, or among HCP who were tested as a result of timing and limitations of nasopharyngeal and oropharyngeal specimen testing; serologic testing was not performed. To protect HCP caring for patients with suspected or confirmed COVID-19, health care facilities should continue to follow CDC, state, and local infection control and PPE guidance. Early recognition and prompt isolation, including source control, for patients with possible infection can help minimize unprotected and high-risk HCP exposures. These measures are crucial to protect HCP and preserve the health care workforce in the face of an outbreak already straining the U.S. health care system. Summary What is already known about this topic? Health care personnel (HCP) are at heightened risk of acquiring COVID-19 infection, but limited information exists about transmission in health care settings. What is added by this report? Among 121 HCP exposed to a patient with unrecognized COVID-19, 43 became symptomatic and were tested for SARS-CoV-2, of whom three had positive test results; all three had unprotected patient contact. Exposures while performing physical examinations or during nebulizer treatments were more common among HCP with COVID-19. What are the implications for public health practice? Unprotected, prolonged patient contact, as well as certain exposures, including some aerosol-generating procedures, were associated with SARS-CoV-2 infection in HCP. Early recognition and isolation of patients with possible infection and recommended PPE use can help minimize unprotected, high-risk HCP exposures and protect the health care workforce.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            The aerosol box for intubation in coronavirus disease 2019 patients: an in‐situ simulation crossover study

            Abstract The coronavirus disease 2019 pandemic has led to the manufacturing of novel devices to protect clinicians from the risk of transmission, including the aerosol box for use during tracheal intubation. We evaluated the impact of two aerosol boxes (an early‐generation box and a latest‐generation box) on intubations in patients with severe coronavirus disease 2019 with an in‐situ simulation crossover study. The simulated process complied with the Safe Airway Society coronavirus disease 2019 airway management guidelines. The primary outcome was intubation time; secondary outcomes included first‐pass success and breaches to personal protective equipment. All intubations were performed by specialist (consultant) anaesthetists and video recorded. Twelve anaesthetists performed 36 intubations. Intubation time with no aerosol box was significantly shorter than with the early‐generation box (median (IQR [range]) 42.9 (32.9–46.9 [30.9–57.6])s vs. 82.1 (45.1–98.3 [30.8–180.0])s p = 0.002) and the latest‐generation box (52.4 (43.1–70.3 [35.7–169.2])s, p = 0.008). No intubations without a box took more than 1 min, whereas 14 (58%) intubations with a box took over 1 min and 4 (17%) took over 2 min (including one failure). Without an aerosol box, all anaesthetists obtained first‐pass success. With the early‐generation and latest‐generation boxes, 9 (75%) and 10 (83%) participants obtained first‐pass success, respectively. One breach of personal protective equipment occurred using the early‐generation box and seven breaches occurred using the latest‐generation box. Aerosol boxes may increase intubation times and therefore expose patients to the risk of hypoxia. They may cause damage to conventional personal protective equipment and therefore place clinicians at risk of infection. Further research is required before these devices can be considered safe for clinical use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Risk of COVID-19 among frontline healthcare workers and the general community: a prospective cohort study

              Background: Data for frontline healthcare workers (HCWs) and risk of SARS-CoV-2 infection are limited and whether personal protective equipment (PPE) mitigates this risk is unknown. We evaluated risk for COVID-19 among frontline HCWs compared to the general community and the influence of PPE. Methods: We performed a prospective cohort study of the general community, including frontline HCWs, who reported information through the COVID Symptom Study smartphone application beginning on March 24 (United Kingdom, U.K.) and March 29 (United States, U.S.) through April 23, 2020. We used Cox proportional hazards modeling to estimate multivariate-adjusted hazard ratios (aHRs) of a positive COVID-19 test. Findings: Among 2,035,395 community individuals and 99,795 frontline HCWs, we documented 5,545 incident reports of a positive COVID-19 test over 34,435,272 person-days. Compared with the general community, frontline HCWs had an aHR of 11·6 (95% CI: 10·9 to 12·3) for reporting a positive test. The corresponding aHR was 3·40 (95% CI: 3·37 to 3·43) using an inverse probability weighted Cox model adjusting for the likelihood of receiving a test. A symptom-based classifier of predicted COVID-19 yielded similar risk estimates. Compared with HCWs reporting adequate PPE, the aHRs for reporting a positive test were 1·46 (95% CI: 1·21 to 1·76) for those reporting PPE reuse and 1·31 (95% CI: 1·10 to 1·56) for reporting inadequate PPE. Compared with HCWs reporting adequate PPE who did not care for COVID-19 patients, HCWs caring for patients with documented COVID-19 had aHRs for a positive test of 4·83 (95% CI: 3·99 to 5·85) if they had adequate PPE, 5·06 (95% CI: 3·90 to 6·57) for reused PPE, and 5·91 (95% CI: 4·53 to 7·71) for inadequate PPE. Interpretation: Frontline HCWs had a significantly increased risk of COVID-19 infection, highest among HCWs who reused PPE or had inadequate access to PPE. However, adequate supplies of PPE did not completely mitigate high-risk exposures. Funding: Zoe Global Ltd., Wellcome Trust, EPSRC, NIHR, UK Research and Innovation, Alzheimer’s Society, NIH, NIOSH, Massachusetts Consortium on Pathogen Readiness
                Bookmark

                Author and article information

                Journal
                J Glob Infect Dis
                J Glob Infect Dis
                JGID
                J Global Infect Dis
                Journal of Global Infectious Diseases
                Wolters Kluwer - Medknow (India )
                0974-777X
                0974-8245
                Jan-Mar 2023
                28 February 2023
                : 15
                : 1
                : 6-12
                Affiliations
                [1]Department of Emergency Medicine, CMC, Vellore, Tamil Nadu, India
                Author notes
                Address for correspondence: Dr. Darpanarayan Hazra, Department of Emergency Medicine, CMC, Vellore - 632 004, Tamil Nadu, India. E-mail: drdarpahazra@ 123456gmail.com
                Article
                JGID-15-6
                10.4103/jgid.jgid_165_22
                10118207
                973981d9-b61f-41b4-8ffc-63fe6a305d2a
                Copyright: © 2023 Journal of Global Infectious Diseases

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 27 August 2022
                : 18 October 2022
                : 27 October 2022
                Categories
                Original Article

                Infectious disease & Microbiology
                aerosol box,airway management,covid-19,personal protective equipment,rapid sequence intubation,systematic review

                Comments

                Comment on this article