15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transmission of COVID-19 to Health Care Personnel During Exposures to a Hospitalized Patient — Solano County, California, February 2020

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          On February 26, 2020, the first U.S. case of community-acquired coronavirus disease 2019 (COVID-19) was confirmed in a patient hospitalized in Solano County, California ( 1 ). The patient was initially evaluated at hospital A on February 15; at that time, COVID-19 was not suspected, as the patient denied travel or contact with symptomatic persons. During a 4-day hospitalization, the patient was managed with standard precautions and underwent multiple aerosol-generating procedures (AGPs), including nebulizer treatments, bilevel positive airway pressure (BiPAP) ventilation, endotracheal intubation, and bronchoscopy. Several days after the patient’s transfer to hospital B, a real-time reverse transcription–polymerase chain reaction (real-time RT-PCR) test for SARS-CoV-2 returned positive. Among 121 hospital A health care personnel (HCP) who were exposed to the patient, 43 (35.5%) developed symptoms during the 14 days after exposure and were tested for SARS-CoV-2; three had positive test results and were among the first known cases of probable occupational transmission of SARS-CoV-2 to HCP in the United States. Little is known about specific risk factors for SARS-CoV-2 transmission in health care settings. To better characterize and compare exposures among HCP who did and did not develop COVID-19, standardized interviews were conducted with 37 hospital A HCP who were tested for SARS-CoV-2, including the three who had positive test results. Performing physical examinations and exposure to the patient during nebulizer treatments were more common among HCP with laboratory-confirmed COVID-19 than among those without COVID-19; HCP with COVID-19 also had exposures of longer duration to the patient. Because transmission-based precautions were not in use, no HCP wore personal protective equipment (PPE) recommended for COVID-19 patient care during contact with the index patient. Health care facilities should emphasize early recognition and isolation of patients with possible COVID-19 and use of recommended PPE to minimize unprotected, high-risk HCP exposures and protect the health care workforce. HCP with potential exposures to the index patient at hospital A were identified through medical record review. Hospital and health department staff members contacted HCP for initial risk stratification and classified HCP into categories of high, medium, low, and no identifiable risk, according to CDC guidance.* HCP at high or medium risk were furloughed and actively monitored; those at low risk were asked to self-monitor for symptoms for 14 days from their last exposure. † Nasopharyngeal and oropharyngeal specimens were collected once from HCP who developed symptoms consistent with COVID-19 § during their 14-day monitoring period, and specimens were tested for SARS-CoV-2 using real-time RT-PCR at the California Department of Public Health. Serologic testing and testing for other respiratory viruses was not performed. The investigation team, including hospital, local and state health departments, and CDC staff members, attempted to contact all 43 tested HCP by phone to conducted interviews regarding index patient exposures using a standardized exposure assessment tool. Two-sided p-values were calculated using Fisher’s exact test for categorical variables and Wilcoxon rank-sum test for continuous variables; p-values <0.05 were considered statistically significant. Analyses were conducted using SAS (version 9.4; SAS Institute). The California Health and Human Services Agency’s Committee for the Protection of Human Subjects and CDC determined this investigation to be public health practice. Hospital A identified 145 HCP with potential exposure to the index patient. After the initial interview, 24 (17%) HCP were classified as having no identifiable risk; the remaining 121 were classified as having high (14), medium (80), or low (27) risk. Over the course of their monitoring periods, 43 (36%) of these HCP became symptomatic and underwent testing for SARS-CoV-2, with a median of 10 days from last exposure to specimen collection (Table 1); SARS-CoV-2 was detected in three (7%) HCP. Thirty-seven of 43 (86%) HCP who were tested were interviewed, including all three HCP with positive test results. ¶ TABLE 1 Demographic characteristics, exposure risk categories, and job titles of 43 health care personnel (HCP) who were exposed to a hospitalized patient with COVID-19, became symptomatic, and were tested for SARS-CoV-2 — Solano County, California, February 2020 Characteristic No. (%) Total HCP 43 (100) Age in yrs, median (range) 39 (27–60) Sex Female 36 (84) Male 7 (16) Risk category* High 5 (12) Medium 36 (84) Low 2 (5) Days from last contact with index patient to SARS-CoV-2 specimen collection, median (range) 10 (8–14) Job title Registered nurse 22 (51) Respiratory therapist 4 (9) Phlebotomist 4 (9) Certified nursing assistant 3 (7) Physician 3 (7) Environmental services worker 3 (7) Nutrition services worker 2 (5) Pharmacist 1 (2) Other 1 (2) Abbreviation: COVID-19 = coronavirus disease 2019. * According to initial risk stratification by hospital and public health staff members. Among 43 HCP who were tested, 84% were female, 51% were registered nurses, and 95% were at high or medium risk (Table 1). Among the three HCP with COVID-19, two had high-risk and one had medium-risk exposures. Both HCP at high risk who developed COVID-19 had frequent, close contact with the index patient; one reported being present for a total of 3 hours while the patient was on BiPAP, and the other participated in BiPAP placement and intubation. Neither wore a facemask, respirator, eye protection, or gown. The third staff member with COVID-19, who was at medium risk, reported close contact with the patient for a total of 2 hours but not during AGPs. This staff member reported wearing a facemask and gloves most of the time but removed the mask occasionally to speak and did not wear eye protection. Seventeen (46%) of 37 interviewed HCP reported exposure to the patient during at least one AGP (Table 2).** Being present for or assisting with nebulizer treatments was more common among HCP who developed COVID-19 (67%) than among those who did not (9%) (p = 0.04); being present for or assisting with BiPAP was also more common among HCP with COVID-19, although the difference was not statistically significant (p = 0.06). The median estimated duration of overall exposure to the patient was higher among HCP with COVID-19 (120 minutes) than among those without COVID-19 (25 minutes) (p = 0.06). Similarly, the median duration of exposure during AGPs †† was higher among HCP with COVID-19 (95 minutes) than among those without COVID-19 (0 minutes) (p = 0.13) (Table 3). Among non-AGP clinical activities, performing a physical examination was more common among HCP with COVID-19 (p = 0.02) (Table 2). Some HCP reported wearing gloves or facemasks during index patient care activities (Table 3); however, none reported use of eye protection, gowns, N95 respirators, or powered air-purifying respirators (PAPRs). At hospital B, 146 HCP had high-, medium-, or low-risk exposures; eight became symptomatic and were tested, none of whom had SARS-CoV-2 detected (CS Martin, MSN, personal communication, 2020). TABLE 2 Reported patient care activities, including aerosol-generating procedures (AGPs), conducted by 37 health care personnel (HCP) who were tested for SARS-CoV-2 and participated in interviews — Solano County, California, February 2020 Exposures No. (%) p-value HCP with COVID-19 HCP without COVID-19 Total HCP 3 34 N/A Non-AGP activities* Taking vital signs 2 (67) 7 (21) 0.14 Taking medical history 1 (33) 7 (21) 0.53 Performing physical exam 3 (100) 8 (24) 0.02 Providing medication 1 (33) 10 (29) 1.00 Bathing or cleaning patient 0 (0) 4 (12) 1.00 Lifting or positioning patient 1 (33) 12 (35) 1.00 Emptying bedpan 1 (33) 2 (6) 0.23 Changing linens 0 (0) 5 (14) 1.00 Cleaning patient room 0 (0) 4 (12) 1.00 Peripheral line insertion 0 (0) 1 (3) 1.00 Central line insertion 0 (0) 1 (3) 1.00 Drawing arterial blood gas 1 (33) 1 (3) 0.16 Drawing blood 0 (0) 5 (15) 1.00 Manipulation of oxygen mask or tubing 2 (67) 5 (15) 0.09 Manipulation of ventilator or tubing 0 (0) 7 (21) 1.00 In room while high-flow oxygen being delivered 1 (33) 9 (26) 1.00 Collecting respiratory specimen 0 (0) 3 (9) 1.00 AGPs*,† Airway suctioning 0 (0) 7 (21) 1.00 Noninvasive ventilation (BiPAP, CPAP) 2 (67) 4 (12) 0.06 Manual (bag) ventilation 1 (33) 2 (6) 0.23 Nebulizer treatments 2 (67) 3 (9) 0.04 Breaking ventilation circuit 0 (0) 5 (15) 1.00 Sputum induction 0 (0) 1 (3) 1.00 Intubation 1 (33) 2 (6) 0.23    Performed or assisted 1 (33) 1 (3) 0.16    Present in room 0 (0) 1 (3) 1.00 Bronchoscopy 0 (0) 3 (9) 1.00    Performed or assisted 0 (0) 1 (3) 1.00    Present in room 0 (0) 3 (9) 1.00 Any AGP 2 (67) 15 (44) 0.58 Abbreviations: BiPAP = bilevel positive airway pressure; COVID-19 = coronavirus disease 2019; CPAP = continuous positive airway pressure; N/A = not applicable. * Other patient care activities addressed in the exposure assessment tool but not listed here were not reported by any interviewed HCP. † For all AGPs listed here except intubation and bronchoscopy, exposure to AGP includes either performing or assisting with the procedure or being present in the patient’s room while the procedure was being performed. For intubation and bronchoscopy, performing or assisting with the procedure and being present in the room are presented separately. TABLE 3 Reported personal protective equipment (PPE) use and exposure characteristics among 37 health care personnel (HCP) who were tested for SARS-CoV-2 and participated in interviews — Solano County, California, February 2020 Exposures No./Total no. (%) p-value HCP with COVID-19 HCP without COVID-19 Reported always* using specified PPE during AGPs†,§ with index patient Gloves 2/2 (100) 10/16 (63) 0.53 Facemask 0/2 (0) 3/16 (19) 1.00 Reported always* using specified PPE during non-AGP activities† with index patient Gloves 3/3 (100) 21/34 (62) 0.54 Facemask 0/3 (0) 3/34 (9) 1.00 Duration of exposure to index patient Longest single duration of time in room (mins) <2 0/3 (0) 2/34 (6) 0.70 2–30 2/3 (67) 23/34 (68) 31–60 0/3 (0) 4/34 (12) >60 1/3 (33) 3/34 (9) Median (IQR) total estimated time in patient room, mins 120 (120–420) 25 (10–50) 0.06 Median (IQR) total estimated time in patient room during AGPs, mins¶ 95 (0–160) 0 (0–3) 0.13 Came within 6 ft of index patient 3/3 (100) 30/34 (91) 1.00 Reported direct skin-to-skin contact with index patient 0/3 (0) 8/34 (24) 1.00 Index patient either masked or on closed-system ventilator when contact occurred Always 0/3 (0) 7/34 (23) 0.58 Sometimes 2/3 (67) 10/34 (32) Never 1/3 (33) 14/34 (45) Abbreviations: AGPs = aerosol-generating procedures; COVID-19 = coronavirus disease 2019; IQR = interquartile range. * Versus sometimes or never. † No HCP reported use of gowns, N95 respirators, powered air-purifying respirators (PAPRs), or eye protection during any patient care activities for index patient. § Denominators for PPE use during AGPs are numbers of HCP exposed to AGPs. ¶ This was estimated by asking each interviewed staff member to report the number and average duration of each exposure to the patient during AGPs. Total estimated duration for each AGP was calculated by multiplying the number of exposures by average duration of exposure during that AGP. Total estimated exposure time for all AGPs was calculated by adding total duration of exposures across all AGPs. Discussion HCP are at high risk for acquiring infections during novel disease outbreaks, especially before transmission dynamics are fully characterized. The cases reported here are among the first known reports of occupational transmission of SARS-CoV-2 to HCP in the United States, although more cases have since been identified ( 2 ). Little is known to date about SARS-CoV-2 transmission in health care settings. Reports from Illinois, Singapore, and Hong Kong have described cohorts of HCP exposed to patients with COVID-19 without any documented HCP transmission ( 3 – 5 ); most HCP exposures in these cases occurred with patients while HCP were using contact, droplet, or airborne precautions. §§ As community transmission of COVID-19 increases, determining whether HCP infections are acquired in the workplace or in the community becomes more difficult. This investigation presented a unique opportunity to analyze exposures associated with COVID-19 transmission in a health care setting without recognized community exposures. Describing exposures among HCP who did and did not develop COVID-19 can inform guidance on how to best protect HCP. Among a cohort of 121 exposed HCP, 43 of whom were symptomatic and tested, three developed confirmed COVID-19, despite multiple unprotected exposures among HCP. HCP who developed COVID-19 had longer durations of exposure to the index patient; exposures during nebulizer treatments and BiPAP were also more common among HCP who developed COVID-19. These findings underscore the heightened COVID-19 transmission risk associated with prolonged, unprotected patient contact and the importance of ensuring that HCP exposed to patients with confirmed or suspected COVID-19 are protected. CDC recommends use of N95 or higher-level respirators and airborne infection isolation rooms when performing AGPs for patients with suspected or confirmed COVID-19; for care that does not include AGPs, CDC recommends use of respirators where available. ¶¶ In California, the Division of Occupational Safety and Health Aerosol Transmissible Diseases standard requires respirators for HCP exposed to potentially airborne pathogens such as SARS-CoV-2; PAPRs are required during AGPs.*** Studies of other respiratory pathogens have documented increased transmission risk associated with AGPs, many of which can generate large droplets as well as small particle aerosols ( 6 ). A recent study found that SARS-CoV-2 generated through nebulization can remain viable in aerosols <5 μm for hours, suggesting that SARS-CoV-2 could be transmitted at least in part through small particle aerosols ( 7 ). Among the three HCP with COVID-19 at hospital A, two had index patient exposures during AGPs; one did not and reported wearing a facemask but no eye protection for most of the contact time with the patient. Given multiple unprotected exposures among HCP in this investigation, separating risks associated with specific procedures from those associated with duration of exposure and lack of recommended PPE is difficult. More research to determine the risks associated with specific procedures and the protectiveness of different types of PPE, as well as the extent of short-range aerosol transmission of SARS-CoV-2, is needed. Patient source control (e.g., patient wearing a mask or connected to a closed-system ventilator during HCP exposures) might also reduce risk of SARS-CoV-2 transmission. Although the index patient was not masked or ventilated for the majority of hospital A admission, at hospital B, where the patient remained on a closed system ventilator from arrival to receiving a positive test result, none of the 146 HCP identified as exposed developed known COVID-19 infection ( 8 ). Source control strategies, such as masking of patients, visitors, and HCP, should be considered by health care facilities to reduce risk of SARS-CoV-2 transmission. This findings in this report are subject to at least three limitations. First, exposures among HCP were self-reported and are subject to recall bias. Second, the low number of cases limits the ability to detect statistically significant differences in exposures and does not allow for multivariable analyses to adjust for potential confounding. Finally, additional infections might have occurred among asymptomatic exposed HCP who were not tested, or among HCP who were tested as a result of timing and limitations of nasopharyngeal and oropharyngeal specimen testing; serologic testing was not performed. To protect HCP caring for patients with suspected or confirmed COVID-19, health care facilities should continue to follow CDC, state, and local infection control and PPE guidance. Early recognition and prompt isolation, including source control, for patients with possible infection can help minimize unprotected and high-risk HCP exposures. These measures are crucial to protect HCP and preserve the health care workforce in the face of an outbreak already straining the U.S. health care system. Summary What is already known about this topic? Health care personnel (HCP) are at heightened risk of acquiring COVID-19 infection, but limited information exists about transmission in health care settings. What is added by this report? Among 121 HCP exposed to a patient with unrecognized COVID-19, 43 became symptomatic and were tested for SARS-CoV-2, of whom three had positive test results; all three had unprotected patient contact. Exposures while performing physical examinations or during nebulizer treatments were more common among HCP with COVID-19. What are the implications for public health practice? Unprotected, prolonged patient contact, as well as certain exposures, including some aerosol-generating procedures, were associated with SARS-CoV-2 infection in HCP. Early recognition and isolation of patients with possible infection and recommended PPE use can help minimize unprotected, high-risk HCP exposures and protect the health care workforce.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

          To the Editor: A novel human coronavirus that is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly called HCoV-19) emerged in Wuhan, China, in late 2019 and is now causing a pandemic. 1 We analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus. 2 We evaluated the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). SARS-CoV-2 nCoV-WA1-2020 (MN985325.1) and SARS-CoV-1 Tor2 (AY274119.3) were the strains used. Aerosols (<5 μm) containing SARS-CoV-2 (105.25 50% tissue-culture infectious dose [TCID50] per milliliter) or SARS-CoV-1 (106.75-7.00 TCID50 per milliliter) were generated with the use of a three-jet Collison nebulizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum resulted in cycle-threshold values between 20 and 22, similar to those observed in samples obtained from the upper and lower respiratory tract in humans. Our data consisted of 10 experimental conditions involving two viruses (SARS-CoV-2 and SARS-CoV-1) in five environmental conditions (aerosols, plastic, stainless steel, copper, and cardboard). All experimental measurements are reported as means across three replicates. SARS-CoV-2 remained viable in aerosols throughout the duration of our experiment (3 hours), with a reduction in infectious titer from 103.5 to 102.7 TCID50 per liter of air. This reduction was similar to that observed with SARS-CoV-1, from 104.3 to 103.5 TCID50 per milliliter (Figure 1A). SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces (Figure 1A), although the virus titer was greatly reduced (from 103.7 to 100.6 TCID50 per milliliter of medium after 72 hours on plastic and from 103.7 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). The stability kinetics of SARS-CoV-1 were similar (from 103.4 to 100.7 TCID50 per milliliter after 72 hours on plastic and from 103.6 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). On copper, no viable SARS-CoV-2 was measured after 4 hours and no viable SARS-CoV-1 was measured after 8 hours. On cardboard, no viable SARS-CoV-2 was measured after 24 hours and no viable SARS-CoV-1 was measured after 8 hours (Figure 1A). Both viruses had an exponential decay in virus titer across all experimental conditions, as indicated by a linear decrease in the log10TCID50 per liter of air or milliliter of medium over time (Figure 1B). The half-lives of SARS-CoV-2 and SARS-CoV-1 were similar in aerosols, with median estimates of approximately 1.1 to 1.2 hours and 95% credible intervals of 0.64 to 2.64 for SARS-CoV-2 and 0.78 to 2.43 for SARS-CoV-1 (Figure 1C, and Table S1 in the Supplementary Appendix). The half-lives of the two viruses were also similar on copper. On cardboard, the half-life of SARS-CoV-2 was longer than that of SARS-CoV-1. The longest viability of both viruses was on stainless steel and plastic; the estimated median half-life of SARS-CoV-2 was approximately 5.6 hours on stainless steel and 6.8 hours on plastic (Figure 1C). Estimated differences in the half-lives of the two viruses were small except for those on cardboard (Figure 1C). Individual replicate data were noticeably “noisier” (i.e., there was more variation in the experiment, resulting in a larger standard error) for cardboard than for other surfaces (Fig. S1 through S5), so we advise caution in interpreting this result. We found that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under the experimental circumstances tested. This indicates that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic. 3,4 Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, 5 and they provide information for pandemic mitigation efforts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Aerosol Generating Procedures and Risk of Transmission of Acute Respiratory Infections to Healthcare Workers: A Systematic Review

            Aerosol generating procedures (AGPs) may expose health care workers (HCWs) to pathogens causing acute respiratory infections (ARIs), but the risk of transmission of ARIs from AGPs is not fully known. We sought to determine the clinical evidence for the risk of transmission of ARIs to HCWs caring for patients undergoing AGPs compared with the risk of transmission to HCWs caring for patients not undergoing AGPs. We searched PubMed, EMBASE, MEDLINE, CINAHL, the Cochrane Library, University of York CRD databases, EuroScan, LILACS, Indian Medlars, Index Medicus for SE Asia, international health technology agencies and the Internet in all languages for articles from 01/01/1990 to 22/10/2010. Independent reviewers screened abstracts using pre-defined criteria, obtained full-text articles, selected relevant studies, and abstracted data. Disagreements were resolved by consensus. The outcome of interest was risk of ARI transmission. The quality of evidence was rated using the GRADE system. We identified 5 case-control and 5 retrospective cohort studies which evaluated transmission of SARS to HCWs. Procedures reported to present an increased risk of transmission included [n; pooled OR(95%CI)] tracheal intubation [n = 4 cohort; 6.6 (2.3, 18.9), and n = 4 case-control; 6.6 (4.1, 10.6)], non-invasive ventilation [n = 2 cohort; OR 3.1(1.4, 6.8)], tracheotomy [n = 1 case-control; 4.2 (1.5, 11.5)] and manual ventilation before intubation [n = 1 cohort; OR 2.8 (1.3, 6.4)]. Other intubation associated procedures, endotracheal aspiration, suction of body fluids, bronchoscopy, nebulizer treatment, administration of O2, high flow O2, manipulation of O2 mask or BiPAP mask, defibrillation, chest compressions, insertion of nasogastric tube, and collection of sputum were not significant. Our findings suggest that some procedures potentially capable of generating aerosols have been associated with increased risk of SARS transmission to HCWs or were a risk factor for transmission, with the most consistent association across multiple studies identified with tracheal intubation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Characteristics of Health Care Personnel with COVID-19 — United States, February 12–April 9, 2020

              As of April 9, 2020, the coronavirus disease 2019 (COVID-19) pandemic had resulted in 1,521,252 cases and 92,798 deaths worldwide, including 459,165 cases and 16,570 deaths in the United States ( 1 , 2 ). Health care personnel (HCP) are essential workers defined as paid and unpaid persons serving in health care settings who have the potential for direct or indirect exposure to patients or infectious materials ( 3 ). During February 12–April 9, among 315,531 COVID-19 cases reported to CDC using a standardized form, 49,370 (16%) included data on whether the patient was a health care worker in the United States; including 9,282 (19%) who were identified as HCP. Among HCP patients with data available, the median age was 42 years (interquartile range [IQR] = 32–54 years), 6,603 (73%) were female, and 1,779 (38%) reported at least one underlying health condition. Among HCP patients with data on health care, household, and community exposures, 780 (55%) reported contact with a COVID-19 patient only in health care settings. Although 4,336 (92%) HCP patients reported having at least one symptom among fever, cough, or shortness of breath, the remaining 8% did not report any of these symptoms. Most HCP with COVID-19 (6,760, 90%) were not hospitalized; however, severe outcomes, including 27 deaths, occurred across all age groups; deaths most frequently occurred in HCP aged ≥65 years. These preliminary findings highlight that whether HCP acquire infection at work or in the community, it is necessary to protect the health and safety of this essential national workforce. Data from laboratory-confirmed COVID-19 cases voluntarily reported to CDC from 50 states, four U.S. territories and affiliated islands, and the District of Columbia, during February 12–April 9 were analyzed. Cases among persons repatriated to the United States from Wuhan, China, and the Diamond Princess cruise ship during January and February were excluded. Public health departments report COVID-19 cases to CDC using a standardized case report form* that collects information on patient demographics, whether the patient is a U.S. health care worker, symptom onset date, specimen collection dates, history of exposures in the 14 days preceding illness onset, COVID-19 symptomology, preexisting medical conditions, and patient outcomes, including hospitalization, intensive care unit (ICU) admission, and death. HCP patient health outcomes, overall and stratified by age, were classified as hospitalized, hospitalized with ICU admission, and deaths. The lower bound of these percentages was estimated by including all cases within each age group in the denominators. Upper bounds were estimated by including only those cases with known information on each outcome as denominators. Data reported to CDC are preliminary and can be updated by health departments over time. The upper quartile of the lag between onset date and reporting to CDC was 10 days. Because submitted forms might have missing or unknown information at the time of report, all analyses are descriptive, and no statistical comparisons were performed. Stata (version 15.1; StataCorp) and SAS (version 9.4; SAS Institute) were used to conduct all analyses. Among 315,531 U.S. COVID-19 cases reported to CDC during February 12–April 9, data on HCP occupational status were available for 49,370 (16%), among whom 9,282 (19%) were identified as HCP (Figure). Data completeness for HCP status varied by reporting jurisdiction; among 12 states that included HCP status on >80% of all reported cases and reported at least one HCP patient, HCP accounted for 11% (1,689 of 15,194) of all reported cases. FIGURE Daily number of COVID-19 cases, by date of symptom onset, among health care personnel and non-health care personnel (N = 43,986)* , † — United States, February 12–April 9, 2020 Abbreviation: COVID-19 = coronavirus disease 2019. * Onset date was calculated for 5,892 (13%) cases where onset date was missing. This was done by subtracting 4 days (median interval from symptom onset to specimen collection date) from the date of earliest specimen collection. Cases with unknown onset and specimen collection dates were excluded. † Ten-day window is used to reflect the upper quartile in lag between the date of symptom onset and date reported to CDC. The figure is a bar chart showing the number of reported COVID-19 cases among health care personnel and non-health care personnel (N = 43,986), by date of illness onset, in the United States during February 12–April 9, 2020. Among the 8,945 (96%) HCP patients reporting age, the median was 42 years (IQR = 32–54 years); 6,603 (73%) were female (Table 1). Among the 3,801 (41%) HCP patients with available data on race, a total of 2,743 (72%) were white, 801 (21%) were black, 199 (5%) were Asian, and 58 (2%) were other or multiple races. Among 3,624 (39%) with ethnicity specified, 3,252 (90%) were reported as non-Hispanic/Latino and 372 (10%) as Hispanic/Latino. At least one underlying health condition † was reported by 1,779 (38%) HCP patients with available information. TABLE 1 Demographic characteristics, exposures, symptoms, and underlying health conditions among health care personnel with COVID-19 (N = 9,282) — United States, February 12–April 9, 2020 Characteristic (no. with available information) No. (%) Age group (yrs) (8,945) 16–44 4,898 (55) 45–54 1,919 (21) 55–64 1,620 (18) ≥65 508 (6) Sex (9,067) Female 6,603 (73) Male 2,464 (27) Race (3,801) Asian 199 (5) Black 801 (21) White 2,743 (72) Other* 58 (2) Ethnicity (3,624) Hispanic/Latino 372 (10) Non-Hispanic/Latino 3,252 (90) Exposures†,§ (1,423) Only health care exposure 780 (55) Only household exposure 384 (27) Only community exposure 187(13) Multiple exposure settings¶ 72 (5) Symptoms reported§,** (4,707) Fever, cough, or shortness of breath†† 4,336 (92) Cough 3,694 (78) Fever§§ 3,196 (68) Muscle aches 3,122 (66) Headache 3,048 (65) Shortness of breath 1,930 (41) Sore throat 1,790 (38) Diarrhea 1,507 (32) Nausea or vomiting 923 (20) Loss of smell or taste¶¶ 750 (16) Abdominal pain 612 (13) Runny nose 583 (12) Any underlying health condition§,*** (4,733) 1,779 (38) Abbreviation: COVID-19 = coronavirus disease 2019. * “Other” includes patients who were identified as American Indian or Alaska Native (16), Native Hawaiian or Other Pacific Islander (22), or two or more races (20). † Cases were included in the denominator if the patient reported a known contact with a laboratory-confirmed COVID-19 patient within the 14 days before illness onset in a health care, household, or community setting. § Responses include data from standardized fields supplemented with data from free-text fields. ¶ Includes all patients with contact reported in more than one of these settings: health care, household, and community. ** Cases were included in the denominator if the patient had a known symptom status for fever, cough, shortness of breath, nausea or vomiting, and diarrhea. HCP with mild or asymptomatic infections might have been less likely to be tested, thus less likely to be reported. †† Includes all patients with at least one of these symptoms. §§ Patients were included if they had information for either measured or subjective fever variables and were considered to have a fever if “yes” was indicated for either variable. ¶¶ Symptom data on loss of smell or taste was extracted only from free-text symptom fields, thus the proportion with this symptom is likely an underestimate. *** Preexisting medical conditions and other risk factors (yes, no, or unknown) included the following: chronic lung disease (inclusive of asthma, chronic obstructive pulmonary disease, and emphysema); diabetes mellitus; cardiovascular disease; chronic renal disease; chronic liver disease; immunocompromised condition; neurologic disorder, neurodevelopmental or intellectual disability; pregnancy; current smoking status; former smoking status; or other chronic disease. Among 1,423 HCP patients who reported contact with a laboratory-confirmed COVID-19 patient in either health care, household, or community settings, 780 (55%) reported having such contact only in a health care setting within the 14 days before their illness onset; 384 (27%) reported contact only in a household setting; 187 (13%) reported contact only in a community setting; 72 (5%) reported contact in more than one of these settings. Among HCP patients with data available on a core set of signs and symptoms, § a total of 4,336 (92%) reported having at least one of fever, cough, shortness of breath. Two thirds (3,122, 66%) reported muscle aches, and 3,048 (65%) reported headache. Loss of smell or taste was written in for 750 (16%) HCP patients as an “other” symptom. Among HCP patients with data available on age and health outcomes, 6,760 (90%) were not hospitalized, 723 (8%–10%) were hospitalized, 184 (2%–5%) were admitted to an ICU, and 27 (0.3%–0.6%) died (Table 2). Although only 6% of HCP patients were aged ≥65 years, 10 (37%) deaths occurred among persons in this age group. TABLE 2 Hospitalizations,* intensive care unit (ICU) admissions, † and deaths, § by age group among health care personnel with COVID-19 — United States, February 12–April 9, 2020 Age group¶ (yrs) (no. of cases) Outcome, no. (%)** Hospitalization†† ICU admission Death 16–44 (4,898) 260 (5.3–6.4) 44 (0.9–2.2) 6 (0.1–0.3) 45–54 (1,919) 178 (9.3–11.1) 51 (2.7–6.3) 3 (0.2–0.3) 55–64 (1,620) 188 (11.6–13.8) 54 (3.3–7.5) 8 (0.5–1.0) ≥65 (508) 97 (19.1–22.3) 35 (6.9–16.0) 10 (2.0–4.2) Total (8,945) 723 (8.1–9.7) 184 (2.1–4.9) 27 (0.3–0.6) Abbreviation: COVID-19 = coronavirus disease 2019. * Hospitalization status known for 7,483 (84%) patients. † ICU status known for 3,739 (42%) patients. § Death outcomes known for 4,407 (49%) patients. ¶ Age status known for 8,945 (96%) patients. ** Lower bound of range = number of persons hospitalized, admitted to ICU, or who died among total in age group; upper bound of range = number of persons hospitalized, admitted to ICU, or who died among total in age group with known hospitalization status, ICU admission status, or death. †† Hospitalization status includes hospitalization with or without ICU admission. Discussion As of April 9, 2020, a total of 9,282 U.S. HCP with confirmed COVID-19 had been reported to CDC. This is likely an underestimation because HCP status was available for only 16% of reported cases nationwide. HCP with mild or asymptomatic infections might also have been less likely to be tested, thus less likely to be reported. Overall, only 3% (9,282 of 315,531) of reported cases were among HCP; however, among states with more complete reporting of HCP status, HCP accounted for 11% (1,689 of 15,194) of reported cases. The total number of COVID-19 cases among HCP is expected to rise as more U.S. communities experience widespread transmission. Compared with reports of COVID-19 patients in the overall populations of China and Italy ( 4 , 5 ), reports of HCP patients in the United States during February 12–April 9 were slightly younger, and a higher proportion were women; this likely reflects the age and sex distributions among the U.S. HCP workforce. Race and ethnicity distributions among HCP patients reported to CDC are different from those in the overall U.S. population but are more similar to those in the HCP workforce. ¶ , ** Among HCP patients who reported having contact with a laboratory-confirmed COVID-19 patient in health care, household, or community settings, the majority reported contact that occurred in health care settings. However, there were also known exposures in households and in the community, highlighting the potential for exposure in multiple settings, especially as community transmission increases. Further, transmission might come from unrecognized sources, including presymptomatic or asymptomatic persons ( 6 , 7 ). Together, these exposure possibilities underscore several important considerations for prevention. Done alone, contact tracing after recognized occupational exposures likely will fail to identify many HCP at risk for developing COVID-19. Additional measures that will likely reduce the risk for infected HCP transmitting the virus to colleagues and patients include screening all HCP for fever and respiratory symptoms at the beginning of their shifts, prioritizing HCP for testing, and ensuring options to discourage working while ill (e.g., flexible and nonpunitive medical leave policies). Given the evidence for presymptomatic and asymptomatic transmission ( 7 ), covering the nose and mouth (i.e., source control) is recommended in community settings where other social distancing measures are difficult to maintain. †† Assuring source control among all HCP, patients, and visitors in health care settings is another promising strategy for further reducing transmission. Even if everyone in a health care setting is covering their nose and mouth to contain their respiratory secretions, it is still critical that, when caring for patients, HCP continue to wear recommended personal protective equipment (PPE) (e.g., gown, N95 respirator [or facemask if N95 is not available], eye protection, and gloves for COVID-19 patient care). Training of HCP on preventive measures, including hand hygiene and PPE use, is another important safeguard against transmission in health care settings. Among HCP with COVID-19 whose age status was known, 8%–10% were reported to be hospitalized. This is lower than the 21%–31% of U.S. COVID-19 cases with known hospitalization status described in a recent report ( 8 ) and might reflect the younger median age (42 years) of HCP patients compared with that of reported COVID-19 patients overall, as well as prioritization of HCP for testing, which might identify less severe illness. Similar to earlier findings ( 8 ), increasing age was associated with a higher prevalence of severe outcomes, although severe outcomes, including death, were observed in all age groups. Preliminary estimates of the prevalence of underlying health conditions among all patients with COVID-19 reported to CDC through March 2020 ( 9 ) suggested that 38% had at least one underlying condition, the same percentage found in this HCP patient population. Older HCP or those with underlying health conditions ( 8 , 9 ) should consider consulting with their health care provider and employee health program to better understand and manage their risks regarding COVID-19. The increased prevalence of severe outcomes in older HCP should be considered when mobilizing retired HCP to increase surge capacity, especially in the face of limited PPE availability §§ ; one consideration is preferential assignment of retired HCP to lower-risk settings (e.g., telemedicine, administrative assignments, or clinics for non–COVID-19 patients). The findings in this report are subject to at least five limitations. First, approximately 84% of patients were missing data on HCP status. Thus, the number of cases in HCP reported here must be considered a lower bound because additional cases likely have gone unidentified or unreported. Second, among cases reported in HCP, the amount of missing data varied across demographic groups, exposures, symptoms, underlying conditions, and health outcomes; cases with available information might differ systematically from those without available information. Therefore, additional data are needed to confirm findings about the impact of potentially important factors (e.g., disparities in race and ethnicity or underlying health conditions among HCP). Third, additional time will be necessary for full ascertainment of outcomes, such as hospitalization status or death. Fourth, details of occupation and health care setting were not routinely collected through case-based surveillance and, therefore, were unavailable for this analysis. Finally, among HCP patients who reported contact with a confirmed COVID-19 patient in a health care setting, the nature of this contact, including whether it was with a patient, visitor, or other HCP, and the details of potential occupational exposures, including whether HCP were unprotected (i.e., without recommended PPE) or were present during high risk procedures (e.g., aerosol-generating procedures) are unknown ( 10 ). It is critical to make every effort to ensure the health and safety of this essential national workforce of approximately 18 million HCP, both at work and in the community. Surveillance is necessary for monitoring the impact of COVID-19-associated illness and better informing the implementation of infection prevention and control measures. Improving surveillance through routine reporting of occupation and industry not only benefits HCP, but all workers during the COVID-19 pandemic. Summary What is already known about this topic? Limited information is available about COVID-19 infections among U.S. health care personnel (HCP). What is added by this report? Of 9,282 U.S. COVID-19 cases reported among HCP, median age was 42 years, and 73% were female, reflecting these distributions among the HCP workforce. HCP patients reported contact with COVID-19 patients in health care, household, and community settings. Most HCP patients were not hospitalized; however, severe outcomes, including death, were reported among all age groups. What are the implications for public health practice? It is critical to ensure the health and safety of HCP, both at work and in the community. Improving surveillance through routine reporting of occupation and industry not only benefits HCP, but all workers during the COVID-19 pandemic.
                Bookmark

                Author and article information

                Journal
                MMWR Morb Mortal Wkly Rep
                MMWR Morb Mortal Wkly Rep
                WR
                Morbidity and Mortality Weekly Report
                Centers for Disease Control and Prevention
                0149-2195
                1545-861X
                17 April 2020
                17 April 2020
                : 69
                : 15
                : 472-476
                Affiliations
                California Department of Public Health; Epidemic Intelligence Service, CDC; CDC COVID-19 Response Team; Solano County Public Health, Fairfield, California; NorthBay Healthcare, Fairfield, California.
                Author notes
                Corresponding author: Amy Heinzerling, ysf8@ 123456cdc.gov , 510-620-3711.
                Article
                mm6915e5
                10.15585/mmwr.mm6915e5
                7755059
                32298249
                e195b579-e4ce-480e-af76-1f87080b43e8

                All material in the MMWR Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.

                History
                Categories
                Full Report

                Comments

                Comment on this article