19
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mixing tree species at different spatial scales: The effect of alpha, beta and gamma diversity on disturbance impacts under climate change

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          Forest disturbances under climate change

          Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The use of the multi-model ensemble in probabilistic climate projections.

            Recent coordinated efforts, in which numerous climate models have been run for a common set of experiments, have produced large datasets of projections of future climate for various scenarios. Those multi-model ensembles sample initial condition, parameter as well as structural uncertainties in the model design, and they have prompted a variety of approaches to quantify uncertainty in future climate in a probabilistic way. This paper outlines the motivation for using multi-model ensembles, reviews the methodologies published so far and compares their results for regional temperature projections. The challenges in interpreting multi-model results, caused by the lack of verification of climate projections, the problem of model dependence, bias and tuning as well as the difficulty in making sense of an 'ensemble of opportunity', are discussed in detail.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Original Articles: Ecological Resilience, Biodiversity, and Scale

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Applied Ecology
                J Appl Ecol
                Wiley
                0021-8901
                1365-2664
                August 2021
                June 03 2021
                August 2021
                : 58
                : 8
                : 1749-1763
                Affiliations
                [1 ]Department of Forest‐ and Soil Sciences Institute of SilvicultureUniversity of Natural Resources and Life Sciences (BOKU) Vienna Vienna Austria
                [2 ]Ecosystem Dynamics and Forest Management Group School of Life Sciences Technical University of Munich Freising Germany
                [3 ]Department of Environmental Systems Science, Forest Ecology Swiss Federal Institute of Technology (ETH Zurich) Zürich Switzerland
                [4 ]Forest Resources and Management Sustainable Forestry Swiss Federal Research Institute WSL Birmensdorf Switzerland
                [5 ]Berchtesgaden National Park Berchtesgaden Germany
                Article
                10.1111/1365-2664.13912
                96343355-1915-4582-9212-098d50f49ca3
                © 2021

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content593

                Cited by8

                Most referenced authors1,590