9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Applications of electroencephalography in construction

      , , , , ,
      Automation in Construction
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: not found

          The theory of planned behavior

          Icek Ajzen (1991)
          Organizational Behavior and Human Decision Processes, 50(2), 179-211
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis

            We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), independent component analysis (ICA) and time/frequency decompositions including channel and component cross-coherence supported by bootstrap statistical methods based on data resampling. EEGLAB functions are organized into three layers. Top-layer functions allow users to interact with the data through the graphic interface without needing to use MATLAB syntax. Menu options allow users to tune the behavior of EEGLAB to available memory. Middle-layer functions allow users to customize data processing using command history and interactive 'pop' functions. Experienced MATLAB users can use EEGLAB data structures and stand-alone signal processing functions to write custom and/or batch analysis scripts. Extensive function help and tutorial information are included. A 'plug-in' facility allows easy incorporation of new EEG modules into the main menu. EEGLAB is freely available (http://www.sccn.ucsd.edu/eeglab/) under the GNU public license for noncommercial use and open source development, together with sample data, user tutorial and extensive documentation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development and validation of brief measures of positive and negative affect: The PANAS scales.

              In recent studies of the structure of affect, positive and negative affect have consistently emerged as two dominant and relatively independent dimensions. A number of mood scales have been created to measure these factors; however, many existing measures are inadequate, showing low reliability or poor convergent or discriminant validity. To fill the need for reliable and valid Positive Affect and Negative Affect scales that are also brief and easy to administer, we developed two 10-item mood scales that comprise the Positive and Negative Affect Schedule (PANAS). The scales are shown to be highly internally consistent, largely uncorrelated, and stable at appropriate levels over a 2-month time period. Normative data and factorial and external evidence of convergent and discriminant validity for the scales are also presented.
                Bookmark

                Author and article information

                Journal
                Automation in Construction
                Automation in Construction
                Elsevier BV
                09265805
                January 2022
                January 2022
                : 133
                : 103985
                Article
                10.1016/j.autcon.2021.103985
                95bf1712-29ff-40b4-892e-1074a9e41abb
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article