0
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Authors - publish your SDGs-related research with EDP Sciences. Find out more.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nitrogen loading increases both algal and non-algal turbidity in subtropical shallow mesocosms: Implication for nutrient management

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Excess nitrogen (N) loading in summer often boosts phytoplankton growth and increase algal turbidity. In eutrophic shallow lakes, the increased algal production may also augment the abundance of deposit-feeding tubificid worms and thereby sediment resuspension and non-algal turbidity. However, few studies have explored the effects of high N loading on this benthic process in eutrophic shallow lakes. Here, we conducted an outdoor mesocosm experiment in a summer-winter season (177 days) on the shore of subtropical Lake Taihu, China. Each mesocosm contained a 10 cm layer of lake sediment and 450 L of lake water. Nitrate was added weekly to three of the mesocosms, while another three functioned as controls. Our results showed that N addition significantly increased algal particles as water chlorophyll a (Chl- a) increased significantly following N addition. Moreover, significantly higher levels of inorganic suspended solids (ISS) were observed in the mesocosms with added N, indicating elevation of non-algal turbidity as well by the N addition. We attribute the latter to increased sediment resuspension as the abundance of tubificid worms was significantly higher in the N addition mesocosms. Accordingly, our study indicates that high N loading in subtropical shallow lakes may boost both algal and non-algal turbidity in part via benthic-pelagic coupling processes. Our results suggest that alleviation of eutrophication in shallow eutrophic lakes may require a strategic approach to adequately control both N and phosphorus.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.

            The cycles of the key nutrient elements nitrogen (N) and phosphorus (P) have been massively altered by anthropogenic activities. Thus, it is essential to understand how photosynthetic production across diverse ecosystems is, or is not, limited by N and P. Via a large-scale meta-analysis of experimental enrichments, we show that P limitation is equally strong across these major habitats and that N and P limitation are equivalent within both terrestrial and freshwater systems. Furthermore, simultaneous N and P enrichment produces strongly positive synergistic responses in all three environments. Thus, contrary to some prevailing paradigms, freshwater, marine and terrestrial ecosystems are surprisingly similar in terms of N and P limitation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              ggplot2

                Bookmark

                Author and article information

                Contributors
                Journal
                Knowledge & Management of Aquatic Ecosystems
                Knowl. Manag. Aquat. Ecosyst.
                EDP Sciences
                1961-9502
                2023
                August 31 2023
                2023
                : 424
                : 23
                Article
                10.1051/kmae/2023019
                8d9d4c7e-5bd9-4fd0-8c34-f4edd1f3a75f
                © 2023

                https://creativecommons.org/licenses/by-nd/4.0/

                History

                Comments

                Comment on this article